
UNIVERSIDAD
DE CANTABRIA
MAST: a model and tools to predict
response times in event-driven real-

time systems

Tutor'2016

April 2016, Vienna, Austria

Michael González Harbour & Julio Medina
mast@unican.es
www.istr.unican.es
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 1
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
MAST: predicting response times in
event-driven real-time systems

1. Introduction: Elements of a real-time system

2. The search for predictability: Options for Managing Time

3. Modeling and Analyzing real-time systems: tasking models

4. The MAST real-time model and tools environment.

5. Elements of the MAST model.

6. Modeling and integration into the design process

7. Current developments and future work in MAST

8. Conclusions
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 2
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Elements of a real-time system
External Environment

Computer

Real-Time Software

Task
Task

Task
Task

OS

Digital
I/O

Analog
I/O

Communi-
cations

Other
Computers

Clock

Other
I/O
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 3
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Real-time systems

A Real-time system is a combination of a computer, hardware I/O
devices, and special-purpose software, in which:

• there is a strong interaction with the environment

• the environment changes with time

• the system simultaneously controls and/or reacts to different
aspects of the environment

As a result:

• timing requirements are imposed on software

• software is naturally concurrent

To ensure that timing requirements are met, the system’s timing
behavior must be predictable
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 4
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
What’s important in real-time

Predictability of the response time

Criteria for real-time systems differ from that for time-sharing
systems.

Worst case cannot be checked by testing

Time-Share Systems Real-Time Systems

Capacity High throughput Ability to meet timing
requirements:
Schedulability

Responsiveness Fast average response Ensured worst-case
latency bound

Overload Fairness Stability of critical part
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 5
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
MAST: predicting response times in
event-driven real-time systems

1. Introduction: Elements of a real-time system

2. The search for predictability: Options for Managing Time

3. Modeling and Analyzing real-time systems: tasking models

4. The MAST real-time model and tools environment.

5. Elements of the MAST model.

6. Modeling and integration into the design process

7. Current developments and future work in MAST

8. Conclusions
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 6
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Options for managing time

Compile-time schedules:

- time triggered or cyclic executives
- predictability through static schedule
- logical integrity often compromised by timing structure
- difficult to handle aperiodic events & dynamic changes
- difficult to maintain

Run-time schedules:
- priority-based schedulers
- preemptive or non preemptive
- analytical methods needed for predictability
- separates logical structure from timing
- more flexibility
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 7
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Fixed-priority scheduling (FPS)

Fixed-priority preemptive scheduling is very popular for practical
applications, because:

• Timing behavior is simpler to understand

• Behavior under transient overload is easy to manage

• A complete analytical technique exists

• High utilization levels may be achieved (typically 70% to 95% of
CPU)

• Supported in standard concurrent languages or operating
systems:
- Ada’s RT-annex, Java RTSJ
- Real-time POSIX
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 8
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Dynamic priority scheduling

In dynamic priority scheduling it is possible to make better use of
the available resources

We can find two kinds of dynamic priority policies

• static job priority: a static priority is assigned to each task job
- e.g., EDF (earliest deadline first): each job is assigned a priority

equal to its absolute deadline
- the absolute deadline of a job does not change

• dynamic job priority: the priority of a task job may change before
the job is finished
- e.g., LLF (Least Laxity First): the priority of a job is inverse to the

laxity: time left until the end of the job’s absolute deadline, minus
the remaining computation time

- the laxity changes with time
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 9
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Dynamic priority scheduling

Static job priority policies are more common, because they are
simpler

• EDF and its compatible variants are the most common

• treatment of transient overload is more complex

• not supported by standard operating systems
- supported in Java RTSJ
- added to Ada 2005

Mixed EDF/FPS schemes are possibly the best approach
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 10
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
MAST: predicting response times in
event-driven real-time systems

1. Introduction: Elements of a real-time system

2. The search for predictability: Options for Managing Time

3. Modeling and Analyzing real-time systems: tasking models

4. The MAST real-time model and tools environment.

5. Elements of the MAST model.

6. Modeling and integration into the design process

7. Current developments and future work in MAST

8. Conclusions
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 11
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Modeling and Analyzing Real-Time
Systems: A simple tasking Model

Periodic task

- initiated at fixed intervals
- must finish before start of next cycle

Task’s CPU utilization:

- Ci = compute time (execution time) for task i
- Ti = period of task i
- Pi = priority of task i
- Di = deadline of task i
- i = phase of task i
- Ri = response time of task i

CPU utilization for a set of tasks:

Ui Ci Ti=

U U1 U2 Un+ + +=
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 12
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Analysis techniques: (UT, RMA...)
ak 1+ Wi ak() ak

T1

----- C1 ak

Ti 1–

----------- Ci 1– Ci+ + += =

ak 1+ ak Ri= =

a0 C1 C2 Ci+ + +=

C1

T1

------ ...
Cn

Tn

------ U n()+ + n 21 n/ 1– =
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 13
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
And far many enhancements...

... deadlines before the period, interrupts, protection protocols,

blocking times, preemption context switches, OS timer overheads,

activation jitter, varying priorities, deadlines after period, self-

suspensions, sporadic events and servers, interacting tasks,

precedence relationship, edf and hierarchical scheduling,

distributed systems, holistic analysis, offset based activations,

multiprocessor shared resources,.... you say yours...

Each technique, platform, and situation requires variants of the
algorithms & equations + additional elements into the model.
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 14
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
e.g. distributed systems
• Periodic activation or sporadic with a minimum inter-arrival time

• All the steps after the first one have activation jitter
- best-case execution times enable the reduction of jitter

• Offsets allow more accurate response times to be obtained

PR3PR1

ti1
ei

ti2 ti3

di2
Di2

Di3=Di

(CPU-1)
PR2

(CPU-2)(Network)

i2

Ji3

C: WCET

Cb: BCET
T: period
U=C/T
D>T allowed

Linear end-to-end flow
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 15
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Knowledge transfer:
From research to practitioners
Real-time analysis is an engineering basis for analyzing and
designing real-time systems

• Provides an analytical framework for verifying timing
requirements

• Provides guidelines for optimum priority or deadlines
assignment

• Helps to identify timing bottlenecks and errors

• Enable the optimization of allocations via sensitivity analysis
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 16
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Motivation for MAST

Need to do schedulability analysis in real-time applications

• formal model of the timing behavior

• analysis tools that can operate on such model

Few free-software schedulability analysis tools

Need to integrate soft & hard real-time analysis

Need for an open tool that can be used as a plug-in module for
other development tools

• e.g., MARTE / UML tools, model-driven frameworks, ...
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 17
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Objectives of MAST

• Develop a model for describing the timing

behavior of event-driven distributed real-time
systems
- composable software modules
- separation of architecture, platform, and software

modules

• Open model that may evolve to include new
characteristics or points of view of the system

• Develop a set of tools for analyzing the timing
behavior of the application
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 18
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Elements involved in a real-time
model: Platform
Computer
Digital

I/O

Analog
I/O

Communi-
cations

Other
Computers

Other
I/O

OS
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 19
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Elements involved in a real-time
model: Stimuli with external events
External Environment

Computer
Digital

I/O

Analog
I/O

Communi-
cations

Other
Computers

Clock

Other
I/O

OS
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 20
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Elements involved in a real-time
model: sequential software & tasks
External Environment

Computer

Real-Time Software

Task
Task

Task
Task

OS

Digital
I/O

Analog
I/O

Communi-
cations

Other
Computers

Clock

Other
I/O
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 21
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
MAST: predicting response times in
event-driven real-time systems

1. Introduction: Elements of a real-time system

2. The search for predictability: Options for Managing Time

3. Modeling and Analyzing real-time systems: tasking models

4. The MAST real-time model and tools environment.

5. Elements of the MAST model.

6. Modeling and integration into the design process

7. Current developments and future work in MAST

8. Conclusions
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 22
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
The MAST Real-Time Model:
 Overview
Real-time situation

Platform

Event
Handler

Activity

Timing
Requirement

Operation

Shared
Resources

Scheduling
Server

Scheduler

Scheduling
Parameters

Event Event

Event

Reference

Processing
Resource

Software Modules

Schedulable Entities

Mutual exclusion
resource

Step

Schedulable
resource
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 23
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Real-Time Situation
External

Event

Event
Handler

Event
Handler

Event
Handler

Activity Activity Activity

...

Timing
Requirement

Transaction (End-to-end Flow)

Transaction

Internal
Event

(Workload
Event)

(Step) (Step)
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 24
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
The Holistic (offset-based) RTA
algorithm

begin

Jitters and Offsets Initialization
loop

for each end-to-end flow (i)
for each step (j)

end loop
end loop
exit when No Changes in Rij,Rbij

end loop;
end RTA_Holistic

Step (i,j)Analysis

J’
ij

? ’
ij

Pij SDij /Sdij

Rb
ij

Rij

Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 25
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
MAST tooling Environment
Model Building Tools

RT Model
Data

Tools

Data handling Tools

Component Profile

eclipse-ecore

MARTE Profile

Results viewer

Model
description

Results
description

Trace
log

Tool launcher

Simulator

Sensitivity analysis

Prio. assignment

Blocking time
analysis

Graphical editor

XML converter

Schedulability
analysis
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 26
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
A basic real-time system example
Periodics

1: control

2: sensing

3: planning

C=20 ms

C=40 ms

C=100 ms

T = 100 ms

T = 150 ms

T = 350 ms

Deadline 100 ms

Deadline 130 ms

Deadline 350 ms

AperiodicsShared

20 ms

Sensor Data

2 ms

10 ms

Commands

10 ms

C=5 ms

Emergency
Minimum Interarrival

Deadline = 6 msec
after arrival

C=2 ms

I/O-processing
Average Interarrival

Desired Average
Response Time = 20 ms

Time = 50 msec

Time = 40 msec

Resources
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 27
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Transactions in this example
Control
Task

E1 O1

Periodic
T=100 ms

Hard Deadline
D=100 ms

Sensing
Task

E2 O2

Periodic
T=150 ms

Hard Deadline
D=130 ms

Planning
Task

E3 O3

Periodic
T=350 ms

Hard Deadline
D=350 ms

Emergency
Task

E4 O4

Sporadic
MinInt=50 ms

Hard Deadline
D=6 ms

I/O
Task

E5 O5

Unbounded Aperiodic
AvgInt=40 ms

Soft Deadline
D=20 ms
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 28
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
MAST: predicting response times in
event-driven real-time systems

1. Introduction: Elements of a real-time system

2. The search for predictability: Options for Managing Time

3. Modeling and Analyzing real-time systems: tasking models

4. The MAST real-time model and tools environment.

5. Elements of the MAST model.

6. Modeling and integration into the design process

7. Current developments and future work in MAST

8. Conclusions
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 29
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Elements of the MAST Model

Platform

1. Processing Resources

2. Schedulers (primary, secondary)

3. Scheduling policies (fixed priorities, EDF,...)

4. System Timers (overhead)

5. Network Drivers (overhead)

Schedulable entities

6. Scheduling Parameters (priorities, deadlines)

7. Scheduling servers or schedulable resources (tasks, process-
es, threads, message streams...)

8. Synchronization parameters (preemption levels,...)
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 30
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Elements of the MAST Model (cont’d)

Software modules

9. Operations (procedures, functions, messages)

10.Shared resources (mutually exclusive)

Real-time situation

11.Events (external stimuli and internal)

12.Timing Requirements

13.Event Handlers (steps, forks, joins, branch, barrier...)

14.Transactions

15.Overall system model
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 31
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Textual Specification Language

Syntax rules:

- Object format: Object_Name (Parameters);
- Objects have a type and/or name (mandatory)
- Spaces, tabs and line breaks are not considered
- Names like in Ada:
 letter+(letter | number | underline | period)

- Names with or without “quotes” (mandatory for reserved words)
- Referenced names must have been defined previously
- Comments like in Ada: “--”
- Case insensitive

No need to define an identifier before it is used

An XML version for the input model also exists
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 32
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Event Handlers
 Activity / Timed Activity / Rate Divisor / Delay / Offset

Concentrator

... +

Barrier

...

Delivery / Query Server

...+

.

Multicast

....
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 33
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Hierarchical schedulers in MAST
Scheduling
Server

Primary
Scheduler

Scheduling
Parameters

Reference

Processing
Resource

Scheduling
Policy

Scheduling
Server

Scheduling
Parameters Scheduling

Server
Scheduling
Parameters

Scheduling
Server

Scheduling
Parameters

Secondary
Scheduler

Scheduling
Policy

Scheduling
Server

Scheduling
Parameters Scheduling

Server
Scheduling
Parameters Scheduling

Server
Scheduling
Parameters
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 34
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Real-time networks

Few networks guarantee real-time response

• many protocols allow collisions

• no priorities or deadlines in the protocols

Some solutions

• CAN bus and other field buses

• Priority-based token passing

• Time-division multiplexed access

• Point to point networks

• AFDX

• SpaceWire
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 35
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Distributed system model
Network CPU-2CPU-1

Linear Action:

Linear Response to an Event:

aj

ej-1,j ej,j+1
Tj-1,j = Tj = Tj,j+1

a1

e1
a2

e1,2
a3

e2,3

d2
D2

ED3

Action

e1 External
event

e1 Internal
event
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 36
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Example
GUI

Trajectory
Planner

Reporter

Command
Manager

Servo
Control

Data
Sender

Command
Message

Status
Message

Teleoperation Station

Ethernet

Local Controller

1sec

50ms

5ms

NetworkRMT:
Teleoperated Robot
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 37
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Platform: Networks
Network

Packet_Based_Network

Transmission_Kind
Throughput
Max_Packet_Size
Min_Packet_Size
Max_Blocking

Driver

0..* List_of_Drivers
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 38
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Processor overheads caused by
network activity: network drivers
Driver

Packet_Driver

Character_Packet_Driver

RTEP_Packet_Driver
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 39
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Network drivers (cont’d)
Packet_Driver

Character_Packet_Driver

Character_Transmission_Time

Scheduling_Server

Simple_Operation

Packet_Send-
Operation

Packet_Receive-
Operation

Packet_-
Server

Character_Server

Character_Send_Operation

Character_Receive_Operation

1

1

1 1

1
1

Message_Partitioning
RTA_Overhead_Model
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 40
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Processing resources, schedulers,
drivers, and timers
remote_station

regular
processor

remote_station

primary
scheduler

packet

local_controller

regular
processor

local_controller

primary
scheduler

CAN_bus

packet-based
network

driver
packet
driver

CAN_bus

primary
scheduler

overheads

timer timer
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 41
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Scheduling servers
(schedulable resources)
remote_station

primary
scheduler

local_controller

primary
scheduler

CAN_bus

primary
scheduler

message
stream

ethernet
driver1

ethernet
driver2

reporter gui

trajectory
planner

command
manager

servo
control

data
senderpriority
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 42
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Operations
Operation

Simple_Operation

Execution_Times

Composite_Operation

Name

Overridden_Sched_Parameters

Overridden_-
Sched_Parameters

Enclosing_Operation

Execution_Times

Composite_Operations_List

1..*

0..1

Message_Transmission

Shared_Resource

0..*0..*
To_UnlockTo_Lock

Max_Message_Size
Avg_Message_Size
Best_Message_Size
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 43
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Transactions (end-to-end flows):
Distributed transaction in the example
e1

timed activity

Op: tr_planning
Srv: tr_planning

e2

o1

activity (step)

Op: command
Srv: msg_stream

e3

activity

Op: Comm_mgmt
Srv: Comm_mgmt

e4

activity

Op: data_sender
Srv: data_sender

activity

Op: reporter
Srv: reporter

e6

activity

Op: status
Srv: msg_stream

e5

timing
reqs.

event
pattern
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 44
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
MAST: predicting response times in
event-driven real-time systems

1. Introduction: Elements of a real-time system

2. The search for predictability: Options for Managing Time

3. Modeling and Analyzing real-time systems: tasking models

4. The MAST real-time model and tools environment.

5. Elements of the MAST model.

6. Modeling and integration into the design process

7. Current developments and future work in MAST

8. Conclusions
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 45
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
...in a design process...

From a software engineering development process perspective,
the latest schedulability analysis techniques are difficult to apply,
more even by hand.

Need to integrate:

• schedulability analysis tools

• priority assignment

• sensitivity analysis

• design space exploration

A model of the real-time behavior at each relevant phase of the
development process is necessary.
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 46
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Integration into the design process
Party

Analysis

Design

Translation Testing

Requirements
Analysis

System Engineering
Object analysis

Architectural
Design

Mechanism
Design

Detailed
Design

Coding

Unit
Testing Integration and Test

Validation

Concurrency patterns
Synchronization patterns Mapping real-time properties

to subsystems
High-level real-time analysis

Architectural
real-time models
Scheduling
policies

Identification of real-
time situations:

- Transactions
- Timing requirements
- Work loads

WCET evaluation
Schedulability

analysis
Priority Assignment
Sensitivity analysis

Generation of detailed real-
time models
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 47
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
MAST: predicting response times in
event-driven real-time systems

1. Introduction: Elements of a real-time system

2. The search for predictibility: Options for Managing Time

3. Modeling and Analyzing real-time systems: tasking models

4. The MAST real-time model and tools environment.

5. Elements of the MAST model.

6. Modeling and integration into the design process

7. Current developments and future work in MAST

8. Conclusions
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 48
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Analysis Techniques Implemented
Technique Single-
Proc.

Multiple
Proc.

Simple
Trans.

Linear
Trans.

Multi Path
Trans. FP EDF

Classic RMA

EDF Monoprocesor

Varying Priorities

Holistic

EDF within priorities

Offset Based aprox.

Offset based brute
force

Offset Based aprox w
precedence relations.

Offset Based Slanted
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 49
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Scheduling parameters assignment
Technique Fixed
priorities EDF Single-

Processor
Multiple

Processors
Heteroge-

neous

Monoprocessor
Simulated Annealing
HOSPA
Proportional Deadline
(PD)

Normalized Proportional
Deadline (NPD)

Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 50
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Future Work: MAST-2

Align names with MARTE

Partitioned scheduling

• support for ARINC 653 systems with hierarchical scheduling
- fixed priorities on top of timed partitions

• support for TTP networks

Network switches

• support for AFDX deterministic ethernet

• support for prioritized switches

Resource reservations

• virtual resources as a new primary scheduler
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 51
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Future Work: MAST-2 (cont’d)

Enhance modelling capabilities

• support for thread locking from a transaction
- enable modelling synchronous RPC

• enhanced modelling of timers
- allow multiple timers
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 52
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
MAST: predicting response times in
event-driven real-time systems

1. Introduction: Elements of a real-time system

2. The search for predictibility: Options for Managing Time

3. Modeling and Analyzing real-time systems: tasking models

4. The MAST real-time model and tools environment.

5. Elements of the MAST model.

6. Modeling and integration into the design process

7. Current developments and future work in MAST

8. Conclusions
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 53
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Conclusions

Real-time theory is now capable of analyzing complex RT systems

MAST defines a model for describing real-time systems

• distributed and multiprocessor

• complex synchronization and event-driven schemes

• composable software modules

• independence of architecture, platform and modules
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 54
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Conclusions (cont’d)

MAST provides an open set of tools

• hard and soft real-time analysis

• automatic blocking times

• priority assignment

• sensitivity analysis

XML and ecore input specification formalisms allow easy
integration with other tools (e.g. UML and eclipse tools)

MAST is free software
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 55
FACULTAD DE CIENCIAS 10/Apr/16

UNIVERSIDAD
DE CANTABRIA
Conclusions (cont’d)

MAST is evolving and will soon cover aspects such as:

• alignment with MARTE high level application modelling

• partitioned scheduling

• network switches

• additional modelling capabilities

URL

http://mast.unican.es
Software Engineering and Real-Time Group © Michael González Harbour & Julio Medina 56
FACULTAD DE CIENCIAS 10/Apr/16

	MAST: a model and tools to predict response times in event-driven real- time systems
	Tutor'2016
	April 2016, Vienna, Austria
	Michael González Harbour & Julio Medina mast@unican.es www.istr.unican.es

	MAST: predicting response times in event-driven real-time systems
	1. Introduction: Elements of a real-time system
	2. The search for predictability: Options for Managing Time
	3. Modeling and Analyzing real-time systems: tasking models
	4. The MAST real-time model and tools environment.
	5. Elements of the MAST model.
	6. Modeling and integration into the design process
	7. Current developments and future work in MAST
	8. Conclusions

	Elements of a real-time system
	Real-time systems
	A Real-time system is a combination of a computer, hardware I/O devices, and special-purpose software, in which:
	• there is a strong interaction with the environment
	• the environment changes with time
	• the system simultaneously controls and/or reacts to different aspects of the environment

	As a result:
	• timing requirements are imposed on software
	• software is naturally concurrent

	To ensure that timing requirements are met, the system’s timing behavior must be predictable

	What’s important in real-time
	Predictability of the response time
	Criteria for real-time systems differ from that for time-sharing systems.
	Capacity
	High throughput
	Ability to meet timing requirements: Schedulability
	Responsiveness
	Fast average response
	Ensured worst-case latency bound
	Overload
	Fairness
	Stability of critical part

	Worst case cannot be checked by testing

	MAST: predicting response times in event-driven real-time systems
	1. Introduction: Elements of a real-time system
	2. The search for predictability: Options for Managing Time

	3. Modeling and Analyzing real-time systems: tasking models
	4. The MAST real-time model and tools environment.
	5. Elements of the MAST model.
	6. Modeling and integration into the design process
	7. Current developments and future work in MAST
	8. Conclusions

	Options for managing time
	Compile-time schedules:
	- time triggered or cyclic executives
	- predictability through static schedule
	- logical integrity often compromised by timing structure
	- difficult to handle aperiodic events & dynamic changes
	- difficult to maintain

	Run-time schedules:
	- priority-based schedulers
	- preemptive or non preemptive
	- analytical methods needed for predictability
	- separates logical structure from timing
	- more flexibility

	Fixed-priority scheduling (FPS)
	Fixed-priority preemptive scheduling is very popular for practical applications, because:
	• Timing behavior is simpler to understand
	• Behavior under transient overload is easy to manage
	• A complete analytical technique exists
	• High utilization levels may be achieved (typically 70% to 95% of CPU)
	• Supported in standard concurrent languages or operating systems:
	- Ada’s RT-annex, Java RTSJ
	- Real-time POSIX

	Dynamic priority scheduling
	In dynamic priority scheduling it is possible to make better use of the available resources
	We can find two kinds of dynamic priority policies
	• static job priority: a static priority is assigned to each task job
	- e.g., EDF (earliest deadline first): each job is assigned a priority equal to its absolute deadline
	- the absolute deadline of a job does not change

	• dynamic job priority: the priority of a task job may change before the job is finished
	- e.g., LLF (Least Laxity First): the priority of a job is inverse to the laxity: time left until the end of the job’s absolute deadline, minus the remaining computation time
	- the laxity changes with time

	Dynamic priority scheduling
	Static job priority policies are more common, because they are simpler
	• EDF and its compatible variants are the most common
	• treatment of transient overload is more complex
	• not supported by standard operating systems
	- supported in Java RTSJ
	- added to Ada 2005

	Mixed EDF/FPS schemes are possibly the best approach

	MAST: predicting response times in event-driven real-time systems
	1. Introduction: Elements of a real-time system
	2. The search for predictability: Options for Managing Time
	3. Modeling and Analyzing real-time systems: tasking models

	4. The MAST real-time model and tools environment.
	5. Elements of the MAST model.
	6. Modeling and integration into the design process
	7. Current developments and future work in MAST
	8. Conclusions

	Modeling and Analyzing Real-Time Systems: A simple tasking Model
	Periodic task
	- initiated at fixed intervals
	- must finish before start of next cycle

	Task’s CPU utilization:
	- Ci = compute time (execution time) for task ti
	- Ti = period of task ti
	- Pi = priority of task ti
	- Di = deadline of task ti
	- fi = phase of task ti
	- Ri = response time of task ti

	CPU utilization for a set of tasks:

	Analysis techniques: (UT, RMA...)
	And far many enhancements...
	... deadlines before the period, interrupts, protection protocols, blocking times, preemption context switches, OS timer overheads, activation jitter, varying priorities, deadlines after period, self- suspensions, sporadic events and servers, in...
	Each technique, platform, and situation requires variants of the algorithms & equations + additional elements into the model.

	e.g. distributed systems
	• Periodic activation or sporadic with a minimum inter-arrival time
	• All the steps after the first one have activation jitter
	- best-case execution times enable the reduction of jitter

	• Offsets allow more accurate response times to be obtained

	Knowledge transfer: From research to practitioners
	Real-time analysis is an engineering basis for analyzing and designing real-time systems
	• Provides an analytical framework for verifying timing requirements
	• Provides guidelines for optimum priority or deadlines assignment
	• Helps to identify timing bottlenecks and errors
	• Enable the optimization of allocations via sensitivity analysis

	Motivation for MAST
	Need to do schedulability analysis in real-time applications
	• formal model of the timing behavior
	• analysis tools that can operate on such model

	Few free-software schedulability analysis tools
	Need to integrate soft & hard real-time analysis
	Need for an open tool that can be used as a plug-in module for other development tools
	• e.g., MARTE / UML tools, model-driven frameworks, ...

	Objectives of MAST
	• Develop a model for describing the timing behavior of event-driven distributed real-time systems
	- composable software modules
	- separation of architecture, platform, and software modules

	• Open model that may evolve to include new characteristics or points of view of the system
	• Develop a set of tools for analyzing the timing behavior of the application

	Elements involved in a real-time model: Platform
	Elements involved in a real-time model: Stimuli with external events
	Elements involved in a real-time model: sequential software & tasks
	MAST: predicting response times in event-driven real-time systems
	1. Introduction: Elements of a real-time system
	2. The search for predictability: Options for Managing Time
	3. Modeling and Analyzing real-time systems: tasking models
	4. The MAST real-time model and tools environment.

	5. Elements of the MAST model.
	6. Modeling and integration into the design process
	7. Current developments and future work in MAST
	8. Conclusions

	The MAST Real-Time Model: Overview
	Real-Time Situation
	The Holistic (offset-based) RTA algorithm
	begin
	Jitters and Offsets Initialization
	loop
	for each end-to-end flow (i)
	for each step (j)
	end loop
	end loop
	exit when No Changes in Rij,Rbij
	end loop;
	end RTA_Holistic

	MAST tooling Environment
	A basic real-time system example
	Transactions in this example
	MAST: predicting response times in event-driven real-time systems
	1. Introduction: Elements of a real-time system
	2. The search for predictability: Options for Managing Time
	3. Modeling and Analyzing real-time systems: tasking models
	4. The MAST real-time model and tools environment.
	5. Elements of the MAST model.

	6. Modeling and integration into the design process
	7. Current developments and future work in MAST
	8. Conclusions

	Elements of the MAST Model
	Platform
	1. Processing Resources
	2. Schedulers (primary, secondary)
	3. Scheduling policies (fixed priorities, EDF,...)
	4. System Timers (overhead)
	5. Network Drivers (overhead)

	Schedulable entities
	6. Scheduling Parameters (priorities, deadlines)
	7. Scheduling servers or schedulable resources (tasks, processes, threads, message streams...)
	8. Synchronization parameters (preemption levels,...)

	Elements of the MAST Model (cont’d)
	Software modules
	9. Operations (procedures, functions, messages)
	10. Shared resources (mutually exclusive)

	Real-time situation
	11. Events (external stimuli and internal)
	12. Timing Requirements
	13. Event Handlers (steps, forks, joins, branch, barrier...)
	14. Transactions
	15. Overall system model

	Textual Specification Language
	Syntax rules:
	- Object format: Object_Name (Parameters);
	- Objects have a type and/or name (mandatory)
	- Spaces, tabs and line breaks are not considered
	- Names like in Ada: letter+(letter | number | underline | period)
	- Names with or without “quotes” (mandatory for reserved words)
	- Referenced names must have been defined previously
	- Comments like in Ada: “--”
	- Case insensitive

	No need to define an identifier before it is used
	An XML version for the input model also exists

	Event Handlers
	Hierarchical schedulers in MAST
	Real-time networks
	Few networks guarantee real-time response
	• many protocols allow collisions
	• no priorities or deadlines in the protocols

	Some solutions
	• CAN bus and other field buses
	• Priority-based token passing
	• Time-division multiplexed access
	• Point to point networks
	• AFDX
	• SpaceWire

	Distributed system model
	Example
	Platform: Networks
	Processor overheads caused by network activity: network drivers
	Network drivers (cont’d)
	Processing resources, schedulers, drivers, and timers
	Scheduling servers (schedulable resources)
	Operations
	Transactions (end-to-end flows): Distributed transaction in the example
	MAST: predicting response times in event-driven real-time systems
	1. Introduction: Elements of a real-time system
	2. The search for predictability: Options for Managing Time
	3. Modeling and Analyzing real-time systems: tasking models
	4. The MAST real-time model and tools environment.
	5. Elements of the MAST model.
	6. Modeling and integration into the design process

	7. Current developments and future work in MAST
	8. Conclusions

	...in a design process...
	From a software engineering development process perspective, the latest schedulability analysis techniques are difficult to apply, more even by hand.
	Need to integrate:
	• schedulability analysis tools
	• priority assignment
	• sensitivity analysis
	• design space exploration

	A model of the real-time behavior at each relevant phase of the development process is necessary.

	Integration into the design process
	MAST: predicting response times in event-driven real-time systems
	1. Introduction: Elements of a real-time system
	2. The search for predictibility: Options for Managing Time
	3. Modeling and Analyzing real-time systems: tasking models
	4. The MAST real-time model and tools environment.
	5. Elements of the MAST model.
	6. Modeling and integration into the design process
	7. Current developments and future work in MAST

	8. Conclusions

	Analysis Techniques Implemented
	Classic RMA
	þ
	þ
	þ
	EDF Monoprocesor

	þ
	þ
	þ
	Varying Priorities

	þ
	þ
	þ
	þ
	Holistic

	þ
	þ
	þ
	þ
	þ
	þ
	þ
	EDF within priorities

	þ
	þ
	þ
	þ
	þ
	þ
	Offset Based aprox.

	þ
	þ
	þ
	þ
	þ
	þ
	Offset based brute force

	þ
	þ
	þ
	þ
	þ
	þ
	Offset Based aprox w precedence relations.

	þ
	þ
	þ
	þ
	þ
	þ
	Offset Based Slanted

	þ
	þ
	þ
	þ
	þ
	þ

	Scheduling parameters assignment
	Monoprocessor
	þ
	þ
	þ
	Simulated Annealing

	þ
	þ
	þ
	HOSPA

	þ
	þ
	þ
	þ
	þ
	Proportional Deadline (PD)

	þ
	þ
	þ
	þ
	þ
	Normalized Proportional Deadline (NPD)

	þ
	þ
	þ
	þ
	þ

	Future Work: MAST-2
	Align names with MARTE
	Partitioned scheduling
	• support for ARINC 653 systems with hierarchical scheduling
	- fixed priorities on top of timed partitions

	• support for TTP networks

	Network switches
	• support for AFDX deterministic ethernet
	• support for prioritized switches

	Resource reservations
	• virtual resources as a new primary scheduler

	Future Work: MAST-2 (cont’d)
	Enhance modelling capabilities
	• support for thread locking from a transaction
	- enable modelling synchronous RPC

	• enhanced modelling of timers
	- allow multiple timers

	MAST: predicting response times in event-driven real-time systems
	1. Introduction: Elements of a real-time system
	2. The search for predictibility: Options for Managing Time
	3. Modeling and Analyzing real-time systems: tasking models
	4. The MAST real-time model and tools environment.
	5. Elements of the MAST model.
	6. Modeling and integration into the design process
	7. Current developments and future work in MAST
	8. Conclusions

	Conclusions
	Real-time theory is now capable of analyzing complex RT systems
	MAST defines a model for describing real-time systems
	• distributed and multiprocessor
	• complex synchronization and event-driven schemes
	• composable software modules
	• independence of architecture, platform and modules

	Conclusions (cont’d)
	MAST provides an open set of tools
	• hard and soft real-time analysis
	• automatic blocking times
	• priority assignment
	• sensitivity analysis

	XML and ecore input specification formalisms allow easy integration with other tools (e.g. UML and eclipse tools)
	MAST is free software

	Conclusions (cont’d)
	MAST is evolving and will soon cover aspects such as:
	• alignment with MARTE high level application modelling
	• partitioned scheduling
	• network switches
	• additional modelling capabilities

	URL
	http://mast.unican.es

