
POSIX-Compatible Application-Defined Scheduling in MaRTE OS
By: Mario Aldea Rivas and Michael González Harbour

Departamento de Electrónica y Computadores. Universidad de Cantabria

Model

Objectives

Compatible with current 
POSIX scheduling policies

Isolate critical parts from 
failures in the schedulers

Multiple Application 
Schedulers

Application-defined 
protocols for mutexes

Filtering of 
Events

while (1) {
  ...
  posix_appsched_execute_actions 
           (&sched_actions, &timeout,
            &current_time, &sched_event);

  switch (sched_event.event_code) {
  case POSIX_APPSCHED_NEW:
    add_new_thread (sched_event.thread);
    break;
  case POSIX_APPSCHED_READY:
    make_ready (sched_event.thread);
    break;
  case ...
  } ...
}

Suspend waiting for
next scheduling event.

A timeout can be set.

The reactivation time
can be returned.

Activate or suspend 
scheduled threads.

Regular

System 
Scheduler

Application 
Scheduler

Application 
Scheduler

App. Sched-

App. Sched-

Scheduler Space

Regular
Regular
Threads

App. Sched-
App. Scheduled

Threads

App. Sched-
App. Scheduled

Threads

User Space

Sched. Events
Queues

A Scheduling Event is generated 
each time a scheduled thread:

Is CREATED or TERMINATED

Becomes READY or BLOCKED

Is PREEMPTED

LOCKS, UNLOCKS or gets 
BLOCKED in an application-

scheduled mutex

ETC.

Efficiency

Extensive information provided by 
the kernel

POSIX compatible

Integrated Resource management

Application-Scheduler bugs cannot affect 
the rest of the system

Advantages compared to 
application-level implementations

Advantages compared to 
other implementations

Single-processor or 
Multi-processor

Scheduler Thread Body


