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Abstract—The new MAST 2 specification for modelling and 
analysis of real-time systems, introduces two new classes named 
VirtualSchedulableResource and VirtualCommunication Channel. 
They are used for modelling the schedulable entities in real-time 
applications that are designed and executed relying on a resource 
reservation paradigm. These modelling elements bring together 
into one single object the two different views that are used to 
describe a virtual resource through its life cycle. In the initial 
phase of the application design, a virtual view of the modelling 
element is used.  It describes the fraction of the processor or 
network bandwidth needed to satisfy the timing requirements of 
the application. The second view is used afterwards, during the 
application deployment phase. It describes the real scheduling 
parameters with which the processor or network scheduler must 
execute the threads or communication channels that implement 
the virtual resources in the physical platform. The negotiation 
process between the application and the resource reservation 
middleware, which is carried out to make the designed 
application compatible with the current workload of the 
platform, can be seen as the pursuit of a configuration that makes 
both views compatible. This paper describes these new modelling 
elements and some scenarios where they are used.   

Keywords: Real-time; Resource Reservation; Modelling; 
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I.  INTRODUCTION  

Resource Reservations is a paradigm that is widely applied 
to the design and execution of hard real-time applications. Its 
basic principle [1][2][3] in processing resources consists in 
executing each application thread in a server, which has an 
assigned fraction of the processor capacity. If during the 
execution, the thread activity tries to exceed its assigned 
capacity, the server suspends it temporarily to avoid it. 
Similarly, for communication resources each message stream is 
assigned to a communication server that represents a fraction of 
the communication network bandwidth. The use of this 
paradigm provides three main advantages: 

 System robustness: If a system is designed to be 
schedulable according to its specification, and one or more 
of its applications exceed their design specifications by 
requiring more processing capacity than expected, these 
applications would not meet their timing requirements but 
the rest of the system would not be affected. 

 Design simplicity: Using the resource reservation 
paradigm, the design of the scheduling of an application is 
accomplished in two stages. First, the application is 
scheduled independently, based on a virtual execution 
platform. Afterwards, the virtual platform implementation 
is negotiated on the physical execution platform. Among 
other advantages, this allows deploying an application 
with hard real-time requirements on an open platform 
whose workload is unknown by the application designer. 

 Reusability of real-time legacy modules: A legacy 
subsystem or a reusable software component that 
implements real-time services can include as metadata the 
virtual execution platform that describes the resources 
required to satisfy its timing requirements. 

MAST [4] is an open source set of tools that enables 
modelling and performing timing analysis of real-time 
applications. MAST can be used to design real-time 
applications, representing the real-time behavior and 
requirements together with the design information, and 
allowing an automatic schedulability analysis. MAST is 
basically constituted by a modelling methodology, close to that 
proposed by the OMG’s MARTE profile [5][6], and a suite of 
tools including worst-case response time schedulability 
analysis, calculation of blocking times, sensitivity analysis 
through the calculation of slack times, and optimized priority 
assignment techniques. Version 2 of MAST [7] has been 
formulated recently and it extends the modelling methodology 
to advanced real-time paradigms, like resource-reservation and 
partition-based scheduling. The MAST 2 tools are still under 
development but, being both MAST 1 and MAST 2 versions 
based on formal UML metamodels, it is possible to perform 
simple transformations using MDA strategies and take 
advantage of the tools available in the current MAST suite for 
developing systems based on these new paradigms. 

The aim of this paper is to describe how MAST 2 can be 
used to cover the different phases followed in the development 
and execution of applications based on resource reservations. 
Section 2 describes the MAST extension that deals with this 
paradigm, whereas Section 3 describes how the extension is 
applied to develop real-time applications. The information 
provided by the different modelling elements is described 
through a simple example in Section 4. Finally, Section 5 
summarizes some current work lines and conclusions.  
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II. MODELLING ELEMENTS FOR THE RESOURCE 

RESERVATION PARADIGM 

The temporal behavior model of a system is conceived in 
MAST (and in MARTE) as the superposition of two models: 
the reactive model and the resources model, shown in Figure 1. 
The reactive model describes, by means of EndToEndFlow 
elements (as e2efA and e2efB), three aspects: the set of steps 
that, ordered by the control flow, conform the responses to 
events executed in the application, the generation patterns of 
the WorkloadEvents (coming from the environment or from the 
clock) which trigger these responses (such as triggerA and 
triggerB), and the TimingRequirements that must be satisfied 
by the execution of the responses (as tr1 and tr2). The 
resources model describes the usage of processing or 
communication resources and of mutual exclusion resources, 
by the steps belonging to the different EndToEndFlows. In the 
case of passive resources (as a Mutex), for the description of 
the resource it is enough to specify the synchronization 
protocol (priority ceiling, priority inheritance, stack resource). 
However, in the active resources (such as processors and 
communication networks), the model specifies its Scheduler 
together with its policy. In addition, it is necessary to specify 
the set of SchedulableResources, which are schedulable entities 
in a processing resource, each of them characterized  by its 
scheduling parameters. 

 
   The MAST 2 model extension that supports the resource 

reservation paradigm concerns only the SchedulableResource 
model elements. The new specialized elements decouple the 
reactive model from the resources model. This enables the 
design and analysis of the scheduling of an application using a 
virtual platform based upon resource reservation contracts, and 
without knowing the resources of the physical execution 
platform (Figure 2). Bearing in mind that in the development 
process of an application based on resource reservations the 
same instance of a SchedulableResource is going to be 
transformed from its virtual view to the real view, the virtual 
schedulable resource has been defined as inherited from the 
real schedulable resource, thus maintaining both views. The 
tool that processes the instance according to the stage of the 
design process, chooses the appropriate view.  

 

  The modelling elements defined in MAST 2 for representing 
virtual schedulable resources are VirtualSchedulableResource 
and VirtualCommunicationChannel. They extend the Thread 
and Communication Channel classes respectively, by adding a 
reference to the VirtualResourceParams or VirtualComm 
ChannelParams element that holds the information of the 
resource reservation contracts. Figure 3 shows the relations 
among the different modelling elements for the case of 
processing capacity reservation. For simplicity, the 
corresponding network elements are not shown.  

    It is important to notice that the inheritance relationship 
implies that a VirtualSchedulableResource is a Thread, so the 
tools that process it as a real schedulable resource will find 
within it the reference SchedulingParameters that characterizes 
it as a Thread. Likewise, the optional nature (0..1 multiplicity) 
of the Scheduler and SchedulingParameters references, makes 
it possible to create a VirtualSchedulableResource instance 
without any reference to the physical execution platform.  

 
The concrete classes that extend 

ResourceReservationParams define the behavior of the 
VirtualSchedulableResource (or of the VirtualCommunication 
Channel). This root class has been defined as abstract to 
include future types of virtual resources. Figure 4 shows the 
virtual resources currently defined, which follow the periodic 
replenishment strategy [11][12] for fixed priority scheduling: 
the periodic server [8], the deferrable server [9] and the 
sporadic server [10] models defined in the bibliography. 
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Figure 2: Application model in the virtual resource reservation view 

Figure 3: New classes in the resource reservation MAST model 
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The attributes defining any type derived from 
VirtualPeriodicReplenishmentParams are the following: 
 Budget: Time => Minimum execution capacity per server 

period.   

 Deadline: Time => The server guarantees that a piece of 
work of size less than or equal to the budget and requested 
for a server with full capacity will be completed before the 
server’s deadline. 

 Period: Time => The period of the replenishment 
mechanism. The virtual resource will guarantee that every 
period, the part of the application running on it will get, if 
requested at the start of the period, at least the specified 
budget on the processing resource on which the associated 
schedulable resource is running. 

The VirtualCommChannelParams class is similar, except 
for the Budget attribute, which is defined as the number of bits 
of transmission capacity. 

The different server models vary in the granularity of the 
capacity replenishment and in how the platform responds when 
the application time is beyond the budget capacity. As an 
example, Figure 5 shows the worst-case response time of an 
activity of duration ta in a virtual schedulable resource with 
DeferrableServerParams (Budget tB, Deadline tD and Period 
tP). For this kind of virtual schedulable resource it is possible to 
evaluate the maximum response time tx of an activity with 
duration ta in the following manner:  

 

 

 

 

 

 

 

 

 

 

 

 

III. SUPPORTING REAL-TIME APPLICATION DEVELOPMENT 

 Figure 6 shows the four phases followed in the 
development of a real-time application based on the resource 
reservation paradigm: (1) The application is designed relying 
on a virtual platform. (2) The application is analysed to verify 
if it satisfies its timing requirements. (3) The instantiation of 
the virtual platform is negotiated with the execution platform. 
(4) The application is executed. The information and the 
models used in the process are also shown in the figure. 

 

 

A simple example, called ServoControl, is used in this 
paper to illustrate the design process of a real-time system 
based on the resource reservation paradigm. It implements the 
controller of a servo engine, which is executed with a period of 
10ms and a deadline of 5ms on a distributed platform 
composed of two processors, Central and Remote, 
interconnected by a CAN bus with a throughput of 1Mb/s. 
Figure 7 shows the reactive model of the application. It 
comprises only one EndToEndFlow, which involves seven Step 
elements, representing the activities executed in both 
processors and the transmission of messages through the bus. 

   

 

Figure 4: Resource reservation parameters classes in MAST 2 
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Figure 7: Reactive model of the ServoControl example 

Figure 6: Phases in the design and execution of a real-time application 
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A. RT-Application specification and design. 

The real-time application design consists in defining a 
virtual execution platform (i.e. a set of virtual resources), 
assigning to each step the virtual resource where it is executed, 
and according to this mapping, assigning values to the 
attributes of the virtual resources of the virtual platform. It is 
important to remark that this process can be done without 
knowing the physical platform where the application will be 
really executed.   

Different design strategies may be applied to define the 
virtual platform. The simplest one consists in assigning an 
independent virtual resource per transaction and per processing 
node that take part in the application. In this case the 
replenishment period of each virtual resource is made equal to 
the minimum interarrival time of the transaction trigger, and 
the budget must be equal to the sum of the wcets of the Steps 
executed in the same virtual resource. In this strategy the 
deadline attributes are kept indeterminate until the negotiation 
phase. The virtual platform that results from this design 
criterion for the ServoControl example is shown in Table I. 
The RR-Model (see Figure 6) that describes the application 
design is formulated as a MAST 2 model, which includes the 
reactive model (the “controlTrans” EndToEndFlow shown in 
Figure 7), and the virtual resources of Table I.  

TABLE I.  VIRTUAL PLATFORM AFTER DESIGN 

VirtualResource Assigned steps R. Period Budget Deadline

VR_Central 
(vr1) 

readGoal 
evaluateControl 

10 ms 1.2 ms ?

VR_Bus (vr2) transmitReq 
returnPosition 
transmitControl 

10 ms 576 bits ?

VR_Remote 
(vr3) 

readSensor 
setServos 

10 ms 0.125 
ms 

?

   

When other design paradigms are used, the criteria to 
define the number of virtual resources and to assign steps to 
them may be different. Hence, if the wcet of the different steps 
executed in a processor has a large variability, or if some of its 
steps require access to a mutex with a high utilization, it can be 
advisable to use several virtual resources to schedule the steps 
of this processor. Likewise, if the application design is based 
on a component-based paradigm, the deployment of the 
components in the platform is unknown, so it is convenient to 
assign the virtual resources to each individual component in 
order to facilitate their later deployment. In this case, a virtual 
resource can be assigned for each invocation of the component 
services that is made in the different transactions. Hence, a 
strict ownership relation is kept between the component and its 
virtual resources. 

B. RT-Application analysis 

The analysis phase of a real-time application based on a 
resource reservation paradigm deals with establishing the 
relations among the virtual platform attributes that make the 
application satisfy its timing requirements. These requirements 
are formulated in the RR-model as Timing_Requirement 
modelling elements.   

The design criterion described in the previous section 
guarantees that, when the execution of a step is required, there 
is enough budget to execute it without waiting for the next 
replenishment. Besides, its response time (tx) can be delimited 
by the expression tx<tD-(tB-wcet). In the case that the 
EndToEndFlow transaction is linear, for each timing 
requirement imposed on it, a restriction among the virtual 
resources attributes can be obtained. For example, in the 
ServoControl application, the restriction introduced by the 
timing requirement is the following: 

vr1.tD-(vr1.tB-readGoal.wcet)+ vr1.tD-(vr1.tB-evaluateControl.wcet)+ 

  +vr2.tD-(vr2.tB-transmitReq.wcet)+ vr2.tD-(vr2.tB-returnPosition.wcet)+ 

  +vr2.tD-(vr2.tB-transmitControl.wcet)+ vr3.tD-(vr3.tB-readSensor.wcet)+ 

  +vr3.tD-(vr3.tB-setServos.wcet) < tGD 

This expression leads to the following numerical solution: 

2 vr1.tD+ 3 vr2.tD+ 2 vr3.tD ≤ 9.182 ms 

When the reactive model is more complex (e.g., when the 
control flow among the steps relies on fork, join, branch, or 
merge relations), the previous restrictions described as 
inequalities cannot be deduced directly, so the result of the 
analysis would be a set of concrete n-tuples of deadline 
attributes that make the application schedulable. These values 
can be obtained using the MAST 2 model and the MAST 
analysis tools.   

The result of the analysis process of the real-time system is 
the RR-model&constraints model, which it is the result of 
adding to the previous RR-model the set of restrictions 
between the attributes of the virtual resources obtained from 
the analysis process. Again, it is important to notice that the 
analysis process is made without knowing neither the physical 
platform in which the application will be executed nor the other 
applications that will share the same physical platform. 

C. RT-Application negotiation 

The negotiation process is executed as a step previous to 
the deployment and execution of the application on the 
physical execution platform. It is an online process performed 
by the resource reservation service that must be provided by 
the execution platform. This negotiation requires knowing the 
RR-model&constraints of the application, the deployment plan, 
and the current workload of the physical platform. This process 
results in the assignment of values to the scheduling parameters 
of the threads and mutexes of the application that is being 
negotiated, and the reassessment of the threads and mutexes of 
the workload that was already executing, in order to adapt it to 
the new situation. 

The deployment plan describes the assignment of the 
virtual resources of the application to the processing resources 
of the platform. Likewise, it includes the assignment of the 
kind of scheduling parameters (fixed-priority, EDF deadline, 
partition timetable, etc.) to the virtual resources, according to 
the scheduling policy applied to the scheduler of the processing 
resource assigned to them. The need to access this information 
reveals the importance of modelling both the virtual resource of 
the virtual platform and the schedulable resource of the final 
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resources model with a single element. Table II shows the 
resources model of the ServoControl application. 

TABLE II.  RESOURCE MODEL AFTER NEGOTIATION 

VirtualResource/ 
Schedulable Rsrc 

Assigned 
steps 

R. Period/ 
priority 

Budget/ 
scheduler 

Deadline

VR_Central (vr1) 
/centrThr 

readGoal 
evalControl 

10 ms 
/14 

1.2 ms
/centrSch

2.51

VR_Bus (vr2) 
/commChannel 

sendReq 
rtrnPosition 
sendControl 

10 ms 
/146 

576 bits
/busSch 

0.83

VR_Remote (vr3)  
/remiteThr  

readSensors 
setServos 

10 ms 
/22 

0.125 ms
/rmtSch

0.5

 

When the virtual platform established in the RR-model has 
all of its attributes assigned (i.e., in the case of complex 
reactive models), the negotiation process consists in building a 
timing behaviour model by gathering the application model and 
the current workload model, and executing a schedulability 
analysis. Different sets of values can be used until a 
schedulable solution is found. 

However, when the result of the analysis phase is a set of 
restrictions among the virtual resources attributes (and not a set 
of concrete values), there is a higher negotiation capacity. In 
this case, the global model composed by the current workload 
of the platform plus the virtual platform model is partially 
specified, since the budgets and replenishment periods of the 
virtual resources have their definitive values assigned, but the 
deadlines do not have concrete values assigned yet. However, 
these deadlines must satisfy the set of restrictions obtained in 
the real-time analysis of the application. The negotiation task 
consists of looking for a set of values for these deadlines that 
not only satisfies the required restrictions, but also leads to a   
final schedulable workload including the prior application 
contracts together with the new one.  

The online negotiation process requires a quick analysis of 
possible priority assignments and of the schedulability of the 
global model. The design strategy applied leads to global 
models composed of several, although very simple, elements. 
A typical model may be composed of hundreds of virtual 
resources, each of them with a periodic triggering pattern, with 
a period equal to the replenishment period, executing an 
activity whose wcet is equal to the budget, and with a deadline 
less than or equal to the period. If the platform relies on fixed-
priority schedulers, the priority assignment criterion consists in 
assigning the maximum priority to the thread that implements 
the virtual resource with the minimum deadline, and using 
classical RMA for the shedulability analysis. The model is 
more complex if the activities of the virtual resources use 
mutual exclusion resources, although there are other known 
RMA techniques for these cases. In our case, a simplified 
version of the MAST analysis tool [4] is used. It makes it 
possible to analyse the system with hundreds of virtual 
resources in tenths of a second. 

The negotiation process usually requires performing 
hundreds of schedulability analysis because the deadlines of 
the virtual platform have to be modified, keeping the imposed 
restrictions caused by the timing requirements of the 
application, until finding a schedulable global configuration. 

In Table II, the results of the negotiation for a certain prior 
workload are shown. The values of the deadlines attributes are 
the output of this negotiation, and they are compatible with the 
set of restrictions imposed by the timing requirements of the 
application, and with the workload of the processing resources 
of the physical platform. Likewise, the scheduling parameters 
(priorities) of the threads of the physical platform with which 
the timing resources are implemented are also assigned.  

D. Execution of the RT-Application 

Once the virtual resources are instantiated in the physical 
execution platform (if the negotiation process has been 
successful), the execution of the application is launched using 
the resource reservation API of the middleware, binding the 
threads of the application with the existing virtual resources. 

IV. CURRENT STATUS AND FUTURE LINES 

The MAST 2 metamodel has been recently proposed. 
Therefore, updating the tools that form the complete modelling 
and analysis suite will take some time. Taking advantage of the 
fact that both MAST 2 and MAST 1 are defined as formal 
metamodels, MDA strategies have been used to develop the 
design and analysis tools that use the resource reservation 
paradigm. These tools process complete MAST 2 models, 
transforming them into other MAST 2 models that exclusively 
use modelling elements compatible with MAST 1, to whom the 
currently available MAST tools are applicable. Thus, the 
application model is unique and supports the whole resource 
reservation-based development cycle for real-time applications. 
However, in each stage, temporary models suitable to the 
current available MAST tools are generated by lightweight 
model-to-model (M2M) tools implemented with the ATL 
language.  

As an example, we describe below the model 
transformation that leads to a model that allows the search of a 
solution by analysing the application using the MAST 
schedulability analysis tools. This approach is required when 
the  application has a complex control flow and the timing 
analysis cannot be performed analytically according to the 
diagrams shown in Figure 5 and the equations derived from 
them. 

The schedulability analysis is accomplished by 
transforming the MAST 2 model in such a way that each 
VirtualSchedulable Resource or VirtualCommunication 
Channel is replaced by a Thread or CommunicationChannel 
respectively, executed by an independent ProcessingResource 
where a given workload is also being executed. This load 
introduces contention that forces the worst-case response time 
in the activity scheduled by the virtual resource. Of course, this 
worst-case response time value must be compatible with the 
deadline and budget set in the virtual resource. Figure 8 shows 
the response time of an activity of wcet equal to the budget as a 
function of the period of the load activity. The wcet of the load 
activity is chosen as the maximum value that makes both 
activities (application and load) schedulable. We need to find a 
value of the load period that leads to a response time equal to 
the deadline of the virtual resource when the wcet of the 
activity is tB. A load period of tD (see Figure 8) is the only one 
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also causing a worst-case response time when the activity 
executed in the virtual resource has a duration ta<tB. This 
period is the one used in the model transformation. Figure 9 
shows the modelling elements that form the analyzable model 
(compatible with MAST 1 tools) of the activity scheduled by 
the virtual schedulable resource vrx. The elements vrxProc and 
vrxSch are the processor and the scheduler where the vrx 
thread, which executes the activity of the virtual resource in the 
analysis model, is scheduled. RxThLoad is the higher-priority 
thread that executes the load activity modelled by the vrxEtEF 
EndToEndFlow. 

 

 
Figure 10 shows the result of the schedulability analysis 

corresponding to the ServoControl example carried out in this 
work using the schedulability analysis tools currently available 
in MAST. Apart from verifying the application schedulability, 
it also assesses a set of worst-case response times that match 
those previously obtained from the equations in Section 3. 

This paper demonstrates the capacity of the models 
conforming to MAST 2 to support in a uniform way the 
different phases of development of a real-time application 
based on a resource reservation paradigm. This contribution is 
a starting point towards updating the MAST tools in order to 

support the new advanced design paradigms for real-time 
systems covered by MAST 2. 

 

 

   The use of a formal UML metamodel to define MAST 2 
allows it to cover in a unified manner the models 
corresponding to different design strategies for real-time 
systems. Likewise, MAST 2 represents a suitable environment 
to build a new generation of lightweight tools based on model 
transformation rules (instead of source code) that easily allow 
dealing with the new development paradigms for real-time 
systems recently appeared.   
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Figure 10: Results of the analysis of ServoControl using MAST 1 tools 
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Figure 9: MAST 1 type model for the virtual scheduling analysis 
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