
WATERS 2011 33

This work has been funded by the EU under contracts FP7/NoE/214373
(ArtistDesign); and by the Spanish Ministry of Science and Technology under
grant TIN2008-06766-C03-03 (RT-MODEL).

Modelling real-time applications based on resource
reservations

Laura Barros, César Cuevas, Patricia López Martínez, José María Drake, and Michael González Harbour
Grupo de Computadores y Tiempo Real

Universidad de Cantabria
39005, Santander, Spain

{barrosl, cuevasce, lopezpa, drakej, mgh}@unican.es

Abstract—The new MAST 2 specification for modelling and
analysis of real-time systems, introduces two new classes named
VirtualSchedulableResource and VirtualCommunication Channel.
They are used for modelling the schedulable entities in real-time
applications that are designed and executed relying on a resource
reservation paradigm. These modelling elements bring together
into one single object the two different views that are used to
describe a virtual resource through its life cycle. In the initial
phase of the application design, a virtual view of the modelling
element is used. It describes the fraction of the processor or
network bandwidth needed to satisfy the timing requirements of
the application. The second view is used afterwards, during the
application deployment phase. It describes the real scheduling
parameters with which the processor or network scheduler must
execute the threads or communication channels that implement
the virtual resources in the physical platform. The negotiation
process between the application and the resource reservation
middleware, which is carried out to make the designed
application compatible with the current workload of the
platform, can be seen as the pursuit of a configuration that makes
both views compatible. This paper describes these new modelling
elements and some scenarios where they are used.

Keywords: Real-time; Resource Reservation; Modelling;
Virtual Resources

I. INTRODUCTION

Resource Reservations is a paradigm that is widely applied
to the design and execution of hard real-time applications. Its
basic principle [1][2][3] in processing resources consists in
executing each application thread in a server, which has an
assigned fraction of the processor capacity. If during the
execution, the thread activity tries to exceed its assigned
capacity, the server suspends it temporarily to avoid it.
Similarly, for communication resources each message stream is
assigned to a communication server that represents a fraction of
the communication network bandwidth. The use of this
paradigm provides three main advantages:

 System robustness: If a system is designed to be
schedulable according to its specification, and one or more
of its applications exceed their design specifications by
requiring more processing capacity than expected, these
applications would not meet their timing requirements but
the rest of the system would not be affected.

 Design simplicity: Using the resource reservation
paradigm, the design of the scheduling of an application is
accomplished in two stages. First, the application is
scheduled independently, based on a virtual execution
platform. Afterwards, the virtual platform implementation
is negotiated on the physical execution platform. Among
other advantages, this allows deploying an application
with hard real-time requirements on an open platform
whose workload is unknown by the application designer.

 Reusability of real-time legacy modules: A legacy
subsystem or a reusable software component that
implements real-time services can include as metadata the
virtual execution platform that describes the resources
required to satisfy its timing requirements.

MAST [4] is an open source set of tools that enables
modelling and performing timing analysis of real-time
applications. MAST can be used to design real-time
applications, representing the real-time behavior and
requirements together with the design information, and
allowing an automatic schedulability analysis. MAST is
basically constituted by a modelling methodology, close to that
proposed by the OMG’s MARTE profile [5][6], and a suite of
tools including worst-case response time schedulability
analysis, calculation of blocking times, sensitivity analysis
through the calculation of slack times, and optimized priority
assignment techniques. Version 2 of MAST [7] has been
formulated recently and it extends the modelling methodology
to advanced real-time paradigms, like resource-reservation and
partition-based scheduling. The MAST 2 tools are still under
development but, being both MAST 1 and MAST 2 versions
based on formal UML metamodels, it is possible to perform
simple transformations using MDA strategies and take
advantage of the tools available in the current MAST suite for
developing systems based on these new paradigms.

The aim of this paper is to describe how MAST 2 can be
used to cover the different phases followed in the development
and execution of applications based on resource reservations.
Section 2 describes the MAST extension that deals with this
paradigm, whereas Section 3 describes how the extension is
applied to develop real-time applications. The information
provided by the different modelling elements is described
through a simple example in Section 4. Finally, Section 5
summarizes some current work lines and conclusions.

WATERS 2011 34

II. MODELLING ELEMENTS FOR THE RESOURCE

RESERVATION PARADIGM

The temporal behavior model of a system is conceived in
MAST (and in MARTE) as the superposition of two models:
the reactive model and the resources model, shown in Figure 1.
The reactive model describes, by means of EndToEndFlow
elements (as e2efA and e2efB), three aspects: the set of steps
that, ordered by the control flow, conform the responses to
events executed in the application, the generation patterns of
the WorkloadEvents (coming from the environment or from the
clock) which trigger these responses (such as triggerA and
triggerB), and the TimingRequirements that must be satisfied
by the execution of the responses (as tr1 and tr2). The
resources model describes the usage of processing or
communication resources and of mutual exclusion resources,
by the steps belonging to the different EndToEndFlows. In the
case of passive resources (as a Mutex), for the description of
the resource it is enough to specify the synchronization
protocol (priority ceiling, priority inheritance, stack resource).
However, in the active resources (such as processors and
communication networks), the model specifies its Scheduler
together with its policy. In addition, it is necessary to specify
the set of SchedulableResources, which are schedulable entities
in a processing resource, each of them characterized by its
scheduling parameters.

 The MAST 2 model extension that supports the resource

reservation paradigm concerns only the SchedulableResource
model elements. The new specialized elements decouple the
reactive model from the resources model. This enables the
design and analysis of the scheduling of an application using a
virtual platform based upon resource reservation contracts, and
without knowing the resources of the physical execution
platform (Figure 2). Bearing in mind that in the development
process of an application based on resource reservations the
same instance of a SchedulableResource is going to be
transformed from its virtual view to the real view, the virtual
schedulable resource has been defined as inherited from the
real schedulable resource, thus maintaining both views. The
tool that processes the instance according to the stage of the
design process, chooses the appropriate view.

 The modelling elements defined in MAST 2 for representing
virtual schedulable resources are VirtualSchedulableResource
and VirtualCommunicationChannel. They extend the Thread
and Communication Channel classes respectively, by adding a
reference to the VirtualResourceParams or VirtualComm
ChannelParams element that holds the information of the
resource reservation contracts. Figure 3 shows the relations
among the different modelling elements for the case of
processing capacity reservation. For simplicity, the
corresponding network elements are not shown.

 It is important to notice that the inheritance relationship
implies that a VirtualSchedulableResource is a Thread, so the
tools that process it as a real schedulable resource will find
within it the reference SchedulingParameters that characterizes
it as a Thread. Likewise, the optional nature (0..1 multiplicity)
of the Scheduler and SchedulingParameters references, makes
it possible to create a VirtualSchedulableResource instance
without any reference to the physical execution platform.

The concrete classes that extend

ResourceReservationParams define the behavior of the
VirtualSchedulableResource (or of the VirtualCommunication
Channel). This root class has been defined as abstract to
include future types of virtual resources. Figure 4 shows the
virtual resources currently defined, which follow the periodic
replenishment strategy [11][12] for fixed priority scheduling:
the periodic server [8], the deferrable server [9] and the
sporadic server [10] models defined in the bibliography.

trigerA stepA1 stepA2 stepA3

stepB1 stepB2

mutexU

triggerB

e2efA

e2efB

virtualRsrc1

virtualRsrc4 virtualRsrc3

Reactive
model

Virtual
platform

virtualRsrc2

Figure 2: Application model in the virtual resource reservation view

Figure 3: New classes in the resource reservation MAST model

Figure 1: Root elements of the MAST models

triggerA stepA1 stepA2 stepA3

stepB1 stepB2

processorX

primaryScheduler

mutexU

triggerB

e2efA

e2efB

thread1

thread4 thread3

Reactive
model

Resource
model

thread2

tr1

tr2

WATERS 2011 35

The attributes defining any type derived from
VirtualPeriodicReplenishmentParams are the following:
 Budget: Time => Minimum execution capacity per server

period.

 Deadline: Time => The server guarantees that a piece of
work of size less than or equal to the budget and requested
for a server with full capacity will be completed before the
server’s deadline.

 Period: Time => The period of the replenishment
mechanism. The virtual resource will guarantee that every
period, the part of the application running on it will get, if
requested at the start of the period, at least the specified
budget on the processing resource on which the associated
schedulable resource is running.

The VirtualCommChannelParams class is similar, except
for the Budget attribute, which is defined as the number of bits
of transmission capacity.

The different server models vary in the granularity of the
capacity replenishment and in how the platform responds when
the application time is beyond the budget capacity. As an
example, Figure 5 shows the worst-case response time of an
activity of duration ta in a virtual schedulable resource with
DeferrableServerParams (Budget tB, Deadline tD and Period
tP). For this kind of virtual schedulable resource it is possible to
evaluate the maximum response time tx of an activity with
duration ta in the following manner:

III. SUPPORTING REAL-TIME APPLICATION DEVELOPMENT

 Figure 6 shows the four phases followed in the
development of a real-time application based on the resource
reservation paradigm: (1) The application is designed relying
on a virtual platform. (2) The application is analysed to verify
if it satisfies its timing requirements. (3) The instantiation of
the virtual platform is negotiated with the execution platform.
(4) The application is executed. The information and the
models used in the process are also shown in the figure.

A simple example, called ServoControl, is used in this
paper to illustrate the design process of a real-time system
based on the resource reservation paradigm. It implements the
controller of a servo engine, which is executed with a period of
10ms and a deadline of 5ms on a distributed platform
composed of two processors, Central and Remote,
interconnected by a CAN bus with a throughput of 1Mb/s.
Figure 7 shows the reactive model of the application. It
comprises only one EndToEndFlow, which involves seven Step
elements, representing the activities executed in both
processors and the transmission of messages through the bus.

Figure 4: Resource reservation parameters classes in MAST 2

controlTrans: EndToEndFlow

clockEvent

readGoal

transmitReq

readSensorPosition

returnPosition

evaluateControl

transmitControl

setServoInputs

«PeriodicEvent»
period=0.01

«Step»
SimplOp(wcet=4.0E-4)

«Step»
message(maxSize=64)

«Step»
SimplOp(wcet=7.5E-5)

«Step»
Message(maxSize=256)

«Step»
SimplOp(wcet=0.8E-3)

«Step»
Message(maxSize=256)

«Step»
SimplOp(wcet=5.0E-5)

«HardGlobalDeadline»
deadline=5.0E-3
refEvent= ”clockEvent”

e1

e2

e3

e4

e5

e6

end

Figure 7: Reactive model of the ServoControl example

Figure 6: Phases in the design and execution of a real-time application

Timing
requirements

« Mast2»
RR-model

(1)Design

(2)Analysis

(3)Negotiation

(4)Execution
Application
Workload

« Mast2»
RR-model & constraints

« Mast2»
Exec-model

Figure 5: Worst case response time for the deferrable server

tb tB tB-tb+ ta

tb>ta case
time

time

budgetCapacity

tD
tx=tD-tB+ta

ta tD-tB

tB

Execution
requirement tb-ta

tD
tx=tR+tD-tB+ta-tb

tbtD-tB

tB
Execution

requirement

tb<ta and NB=1 case
tR

tD
tD-tB ta-tb

tBbudgetCapacity

tB
tb

WATERS 2011 36

A. RT-Application specification and design.

The real-time application design consists in defining a
virtual execution platform (i.e. a set of virtual resources),
assigning to each step the virtual resource where it is executed,
and according to this mapping, assigning values to the
attributes of the virtual resources of the virtual platform. It is
important to remark that this process can be done without
knowing the physical platform where the application will be
really executed.

Different design strategies may be applied to define the
virtual platform. The simplest one consists in assigning an
independent virtual resource per transaction and per processing
node that take part in the application. In this case the
replenishment period of each virtual resource is made equal to
the minimum interarrival time of the transaction trigger, and
the budget must be equal to the sum of the wcets of the Steps
executed in the same virtual resource. In this strategy the
deadline attributes are kept indeterminate until the negotiation
phase. The virtual platform that results from this design
criterion for the ServoControl example is shown in Table I.
The RR-Model (see Figure 6) that describes the application
design is formulated as a MAST 2 model, which includes the
reactive model (the “controlTrans” EndToEndFlow shown in
Figure 7), and the virtual resources of Table I.

TABLE I. VIRTUAL PLATFORM AFTER DESIGN

VirtualResource Assigned steps R. Period Budget Deadline

VR_Central
(vr1)

readGoal
evaluateControl

10 ms 1.2 ms ?

VR_Bus (vr2) transmitReq
returnPosition
transmitControl

10 ms 576 bits ?

VR_Remote
(vr3)

readSensor
setServos

10 ms 0.125
ms

?

When other design paradigms are used, the criteria to
define the number of virtual resources and to assign steps to
them may be different. Hence, if the wcet of the different steps
executed in a processor has a large variability, or if some of its
steps require access to a mutex with a high utilization, it can be
advisable to use several virtual resources to schedule the steps
of this processor. Likewise, if the application design is based
on a component-based paradigm, the deployment of the
components in the platform is unknown, so it is convenient to
assign the virtual resources to each individual component in
order to facilitate their later deployment. In this case, a virtual
resource can be assigned for each invocation of the component
services that is made in the different transactions. Hence, a
strict ownership relation is kept between the component and its
virtual resources.

B. RT-Application analysis

The analysis phase of a real-time application based on a
resource reservation paradigm deals with establishing the
relations among the virtual platform attributes that make the
application satisfy its timing requirements. These requirements
are formulated in the RR-model as Timing_Requirement
modelling elements.

The design criterion described in the previous section
guarantees that, when the execution of a step is required, there
is enough budget to execute it without waiting for the next
replenishment. Besides, its response time (tx) can be delimited
by the expression tx<tD-(tB-wcet). In the case that the
EndToEndFlow transaction is linear, for each timing
requirement imposed on it, a restriction among the virtual
resources attributes can be obtained. For example, in the
ServoControl application, the restriction introduced by the
timing requirement is the following:

vr1.tD-(vr1.tB-readGoal.wcet)+ vr1.tD-(vr1.tB-evaluateControl.wcet)+

 +vr2.tD-(vr2.tB-transmitReq.wcet)+ vr2.tD-(vr2.tB-returnPosition.wcet)+

 +vr2.tD-(vr2.tB-transmitControl.wcet)+ vr3.tD-(vr3.tB-readSensor.wcet)+

 +vr3.tD-(vr3.tB-setServos.wcet) < tGD

This expression leads to the following numerical solution:

2 vr1.tD+ 3 vr2.tD+ 2 vr3.tD ≤ 9.182 ms

When the reactive model is more complex (e.g., when the
control flow among the steps relies on fork, join, branch, or
merge relations), the previous restrictions described as
inequalities cannot be deduced directly, so the result of the
analysis would be a set of concrete n-tuples of deadline
attributes that make the application schedulable. These values
can be obtained using the MAST 2 model and the MAST
analysis tools.

The result of the analysis process of the real-time system is
the RR-model&constraints model, which it is the result of
adding to the previous RR-model the set of restrictions
between the attributes of the virtual resources obtained from
the analysis process. Again, it is important to notice that the
analysis process is made without knowing neither the physical
platform in which the application will be executed nor the other
applications that will share the same physical platform.

C. RT-Application negotiation

The negotiation process is executed as a step previous to
the deployment and execution of the application on the
physical execution platform. It is an online process performed
by the resource reservation service that must be provided by
the execution platform. This negotiation requires knowing the
RR-model&constraints of the application, the deployment plan,
and the current workload of the physical platform. This process
results in the assignment of values to the scheduling parameters
of the threads and mutexes of the application that is being
negotiated, and the reassessment of the threads and mutexes of
the workload that was already executing, in order to adapt it to
the new situation.

The deployment plan describes the assignment of the
virtual resources of the application to the processing resources
of the platform. Likewise, it includes the assignment of the
kind of scheduling parameters (fixed-priority, EDF deadline,
partition timetable, etc.) to the virtual resources, according to
the scheduling policy applied to the scheduler of the processing
resource assigned to them. The need to access this information
reveals the importance of modelling both the virtual resource of
the virtual platform and the schedulable resource of the final

WATERS 2011 37

resources model with a single element. Table II shows the
resources model of the ServoControl application.

TABLE II. RESOURCE MODEL AFTER NEGOTIATION

VirtualResource/
Schedulable Rsrc

Assigned
steps

R. Period/
priority

Budget/
scheduler

Deadline

VR_Central (vr1)
/centrThr

readGoal
evalControl

10 ms
/14

1.2 ms
/centrSch

2.51

VR_Bus (vr2)
/commChannel

sendReq
rtrnPosition
sendControl

10 ms
/146

576 bits
/busSch

0.83

VR_Remote (vr3)
/remiteThr

readSensors
setServos

10 ms
/22

0.125 ms
/rmtSch

0.5

When the virtual platform established in the RR-model has
all of its attributes assigned (i.e., in the case of complex
reactive models), the negotiation process consists in building a
timing behaviour model by gathering the application model and
the current workload model, and executing a schedulability
analysis. Different sets of values can be used until a
schedulable solution is found.

However, when the result of the analysis phase is a set of
restrictions among the virtual resources attributes (and not a set
of concrete values), there is a higher negotiation capacity. In
this case, the global model composed by the current workload
of the platform plus the virtual platform model is partially
specified, since the budgets and replenishment periods of the
virtual resources have their definitive values assigned, but the
deadlines do not have concrete values assigned yet. However,
these deadlines must satisfy the set of restrictions obtained in
the real-time analysis of the application. The negotiation task
consists of looking for a set of values for these deadlines that
not only satisfies the required restrictions, but also leads to a
final schedulable workload including the prior application
contracts together with the new one.

The online negotiation process requires a quick analysis of
possible priority assignments and of the schedulability of the
global model. The design strategy applied leads to global
models composed of several, although very simple, elements.
A typical model may be composed of hundreds of virtual
resources, each of them with a periodic triggering pattern, with
a period equal to the replenishment period, executing an
activity whose wcet is equal to the budget, and with a deadline
less than or equal to the period. If the platform relies on fixed-
priority schedulers, the priority assignment criterion consists in
assigning the maximum priority to the thread that implements
the virtual resource with the minimum deadline, and using
classical RMA for the shedulability analysis. The model is
more complex if the activities of the virtual resources use
mutual exclusion resources, although there are other known
RMA techniques for these cases. In our case, a simplified
version of the MAST analysis tool [4] is used. It makes it
possible to analyse the system with hundreds of virtual
resources in tenths of a second.

The negotiation process usually requires performing
hundreds of schedulability analysis because the deadlines of
the virtual platform have to be modified, keeping the imposed
restrictions caused by the timing requirements of the
application, until finding a schedulable global configuration.

In Table II, the results of the negotiation for a certain prior
workload are shown. The values of the deadlines attributes are
the output of this negotiation, and they are compatible with the
set of restrictions imposed by the timing requirements of the
application, and with the workload of the processing resources
of the physical platform. Likewise, the scheduling parameters
(priorities) of the threads of the physical platform with which
the timing resources are implemented are also assigned.

D. Execution of the RT-Application

Once the virtual resources are instantiated in the physical
execution platform (if the negotiation process has been
successful), the execution of the application is launched using
the resource reservation API of the middleware, binding the
threads of the application with the existing virtual resources.

IV. CURRENT STATUS AND FUTURE LINES

The MAST 2 metamodel has been recently proposed.
Therefore, updating the tools that form the complete modelling
and analysis suite will take some time. Taking advantage of the
fact that both MAST 2 and MAST 1 are defined as formal
metamodels, MDA strategies have been used to develop the
design and analysis tools that use the resource reservation
paradigm. These tools process complete MAST 2 models,
transforming them into other MAST 2 models that exclusively
use modelling elements compatible with MAST 1, to whom the
currently available MAST tools are applicable. Thus, the
application model is unique and supports the whole resource
reservation-based development cycle for real-time applications.
However, in each stage, temporary models suitable to the
current available MAST tools are generated by lightweight
model-to-model (M2M) tools implemented with the ATL
language.

As an example, we describe below the model
transformation that leads to a model that allows the search of a
solution by analysing the application using the MAST
schedulability analysis tools. This approach is required when
the application has a complex control flow and the timing
analysis cannot be performed analytically according to the
diagrams shown in Figure 5 and the equations derived from
them.

The schedulability analysis is accomplished by
transforming the MAST 2 model in such a way that each
VirtualSchedulable Resource or VirtualCommunication
Channel is replaced by a Thread or CommunicationChannel
respectively, executed by an independent ProcessingResource
where a given workload is also being executed. This load
introduces contention that forces the worst-case response time
in the activity scheduled by the virtual resource. Of course, this
worst-case response time value must be compatible with the
deadline and budget set in the virtual resource. Figure 8 shows
the response time of an activity of wcet equal to the budget as a
function of the period of the load activity. The wcet of the load
activity is chosen as the maximum value that makes both
activities (application and load) schedulable. We need to find a
value of the load period that leads to a response time equal to
the deadline of the virtual resource when the wcet of the
activity is tB. A load period of tD (see Figure 8) is the only one

WATERS 2011 38

also causing a worst-case response time when the activity
executed in the virtual resource has a duration ta<tB. This
period is the one used in the model transformation. Figure 9
shows the modelling elements that form the analyzable model
(compatible with MAST 1 tools) of the activity scheduled by
the virtual schedulable resource vrx. The elements vrxProc and
vrxSch are the processor and the scheduler where the vrx
thread, which executes the activity of the virtual resource in the
analysis model, is scheduled. RxThLoad is the higher-priority
thread that executes the load activity modelled by the vrxEtEF
EndToEndFlow.

Figure 10 shows the result of the schedulability analysis

corresponding to the ServoControl example carried out in this
work using the schedulability analysis tools currently available
in MAST. Apart from verifying the application schedulability,
it also assesses a set of worst-case response times that match
those previously obtained from the equations in Section 3.

This paper demonstrates the capacity of the models
conforming to MAST 2 to support in a uniform way the
different phases of development of a real-time application
based on a resource reservation paradigm. This contribution is
a starting point towards updating the MAST tools in order to

support the new advanced design paradigms for real-time
systems covered by MAST 2.

 The use of a formal UML metamodel to define MAST 2
allows it to cover in a unified manner the models
corresponding to different design strategies for real-time
systems. Likewise, MAST 2 represents a suitable environment
to build a new generation of lightweight tools based on model
transformation rules (instead of source code) that easily allow
dealing with the new development paradigms for real-time
systems recently appeared.

REFERENCES
[1] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves:

an abstraction of managing processor usage”, Proc. 4th Workshop on
Workstation Operating Systems (WWOS-IV), 1993.

[2] C. W. Mercer, R. Rajkumar, and J. Zelenka, “Temporal protection in
real-time operating systems”, Proc. 11th IEEE Workshop on Real-Time
Operating Systems and Software, 1994, pp. 79-83.

[3] R. Rajkumar, K.Juvva, A. Molano and S. Oikawa, “Resource kernels: A
resource-centric approach to real-time and multimedia systems” Proc.
SPIE/ACM Conf. on Multimedia Computing and Networking, 1998.

[4] M. González Harbour, J.J. Gutiérrez, J.C.Palencia and J.M.Drake,
“MAST: Modeling and Analysis Suite for Real-Time Applications”,
Proc. 22nd. Euromicro Conf. Real-Time Systems (ECRTS 2001), 2001.
MAST tool: http://mast.unican.es/

[5] Object Management Group. “UML Profile for Modeling and Analysis of
Real-Time and Embedded systems (MARTE)” version 1.0, OMG doc.
formal/2009-11-02, 2009.

[6] J.Medina and A. García Cuesta, “From composable design models to
schedulability analysis with UML and UML profile for MARTE”. Proc.
of CRTS 2010. 3rd Workshop on pompositional Theory and Technology
for Real-time Embedded Systems November 2010.

[7] C. Cuevas, J.M. Drake et all, “MAST 2 Metamodel”
http://mast.unican.es/simmast/MAST_2_0_Metamodel.pdf.

[8] J.P.Lehoczky, L.Sha and J.K.Strosnider, "Enhanced aperiodic
responsiveness in hard real-time enviroments",Proc. IEEE RTSS 1987.

[9] J. Strosnider, J. Lehoczky and L. Sha, “The Deferrable Server Algorithm
for Enhanced Aperiodic Responsiveness in Hard Real-Time
Environments”, IEEE Transactions on Computers , 44 (1), January 1995.

[10] B. Sprunt, L. Sha, J. Lehoczky, “Aperiodic task scheduling for hard real-
time systems”, Journal of Real-Time Systems, vol 1, July 1989.

[11] S. Saewong, R. Rajkumary J.P. Lehoczky M.H. Klein:"Analysis of
Hierarchical Fixed-Priority Scheduling" Proceedings of the 14 th
Euromicro Conference on Real-Time Systems (ECRTS.02).

[12] R.I. Davis and A. Burns: "An Investigation into Server Parameter
Selection for Hierarchical Fixed Priority Pre-emptive Systems" 16th
International Conference on Real-Time and Network Systems (RTNS
2008

Figure 10: Results of the analysis of ServoControl using MAST 1 tools

Figure 8: Selecting the load period for the virtual scheduling analysis

Virtual resource:
tB=10 ms
tD= 30 ms
tR= 100 ms

Load activity:
 -TLoad= tD

-taLoad= tD-tB

Figure 9: MAST 1 type model for the virtual scheduling analysis

vrx:VirtualSchedulableResource

budget=tB
replenismentPeriod=tR

deadline=tD

vrxProc:RegularProcessor

(Default attributes)

vrxSch:PrimaryScheduler

Host=vrxProc
Policy=FixedPriorityPolicy

vrx:Thread

Scheduler=vrxSch
Param=FixedPriorityParam(

 priority=1)

vrxThLoad:Thread

Scheduler=vrxSch
Param=FixedPriorityParam(

 priority=2)

vrxProc:EndToEndFlow

trg:PeriodicEvent
Period=tD

act:Step

Thread=vrxLoad
Operation= vrxOp

vrxOp:SimpleOperation

Wcet= tD-tB

