
Approach: RTA with MAST

The Challenge

Amalthea to MAST transformation

Amalthea Task

InstructionsInstructionsInstructions

Labels
written

Labels
read

Runnable 1 Runnable 2 Runnable 3

Priority = P

Stimulus

Period: T
Sporadic: [Tmin, Tmax]

Amalthea
Task

Real-time situation: Amalthea Model

Approach: RTA with MAST

MAST Tool

MAST Model

The Challenge (Platform)

CORE0 CORE1 CORE2 CORE3

LRAM0 LRAM1 LRAM2 LRAM3

CROSSBAR

GRAM

LRAM0 LRAM1 LRAM2 LRAM3 GRAM
CORE0 1 9 9 9 9
CORE1 9 1 9 9 9
CORE2 9 9 1 9 9
CORE3 9 9 9 1 9

Memory access times (cycles)

• 200 Mhz
• FIFO at memories

21

The Challenge (Platform)

CORE0 CORE1 CORE2 CORE3

LRAM0 LRAM1 LRAM2 LRAM3

CROSSBAR

GRAM

LRAM0 LRAM1 LRAM2 LRAM3 GRAM
CORE0 1 9 9 9 9
CORE1 9 1 9 9 9
CORE2 9 9 1 9 9
CORE3 9 9 9 1 9

Memory access times (cycles)

• 200 Mhz
• FIFO at memories

21

The Platform

200 MHz system-wide FIFO arbitration at memories

Challenge: To calculate latencies in an engine management system
Tool to model, analyze and optimize real-time systems

Schedulabilty
analysis tools Optimization tools Other tools Support

• Holistic
• Offset-based
• Offset-based slanted
• Offset-based w/

precedence
• Offset-based brute

force

• Simulated annealing
• UD
• ED
• PN
• NPD
• EQS
• EQF
• HOSPA

• Simulator
• Sensitivity analysis
• Graphical editor
• Results viewer

• Shared resources
• Multipath e2 flows
• Sporadic and Polling

Servers
• FP+EDF scheduling
• Networks (AFDX, CAN)
• Partitioned systems
• Generator (GEN4MAST)

Open source, available at mast.unican.es (Windows and Linux)

Aligned with OMG MARTE (SAM profile)

MAST model overview MAST model for analysis

Event-chains crossing different tasks

Event-chains in the same task

http://www.amalthea-project.org/

MAST Model for analysis
• End-to-end flows, aligned with OMG MARTE

4

Step
!i1

Step
!i2

Step
!i3

Step
!i4

Thread 1 Thread 2 Thread 3

ɸi2
Di

Ri4=Ri

ri2

ei

Periodic (Ti)
Sporadic (Tmin,Tmax)

• Threads: Priority (Prioij), Processor (Procij), Preemptive/Non-preemptive

• Steps: Worst-case execution time (Cij), Best-case execution time (Cbij)

• Results from response time analysis:
‣ Global response time: worst-case (Ri), best-case (Rb

i)
‣ Local response time: worst-case (rij), best-case (rb

ij)

Results from response-time analysis:
• Worst-case Local response time: rij
• Worst-case Global response time: Rij
• Best-case response times: rbij, Rbij

MAST Model

Step Step

Schedulable
Resource
(Thread)

Scheduling
Parameters

Scheduler

Processing
Resource

Operation

Mutual
Exclusion
Resource

Timing
Requirement

Real-time situation view

Concurrent architecture
view

Operations view Platform
view

End-to-end flow

Event Event Event

Event
Reference

Results

Amalthea to MAST transformation

• 21 Tasks
• Statically assigned to a core
• Fixed Priority: preemptive/

cooperative
• Released by stimuli: periodic/

sporadic (arbitrary phasing)
• D=T
• Series of Runnables

• 1250 Runnables
• Read labels (memory)
• Instructions: constant/deviation
• Write labels (memory)

• 10000 Labels
• Mapped to GRAM/LRAM
• Local RAM = 1 cycle
• Non-Local RAM = 9 cycles

Amalthea Tasks Amalthea Runnables Labels

Amalthea to MAST transformation

Comparison of Memory Access Strategies in Multi-core Platforms using MAST
Juan M. Rivas1, J. Javier Gutiérrez2, Julio L. Medina2 and Michael González Harbour2
1PARTS Research Center, Université Libre de Bruxelles (Belgium) - 2Software Engineering and Real-Time, University of Cantabria (Spain)
1jrivasco@ulb.ac.be, 2{gutierjj, medinajl, mgh}@unican.es

Event-chains Latency model of data flows among non consecutive runnables

Explicit Implicit LET

Explicit Implicit and LET

Local response times turn
into global ones

Explicit memory access model Implicit and LET memory access model

• All memory access are moved to the
beginning and end of the tasks

• Local memory accesses costs added to
instructions WCET

• Each Runnable can access memory
unrestricted

La
te

nc
y

(m
s)

0

35

70

105

140

Event chain 1 Event chain 2 Event chain 3

104,7

124,1

20,0

104,7

124,1

20,1

104,7

124,0

20,0

104,7

124,0

20,0

65,4

51,4

15,2

63,9

25,5

10,3

Explicit Implicit LET-Dynamic (2 bands) LET-Dynamic (3 bands) LET-Static (2 bands) LET-Static (3 bands)

Event-chain latenciesConsiderations Conclusions

None of the strategies is a clear winner
No solution can reduce jitter and latencies at the same

time

Implicit model has similar latencies than
Explicit for the tasks and higher latencies

for the event chains without getting a
reduction of jitter

Penalty to keep data consistency

LET has a good control of jitter at the
cost of a significant increase of latencies

for both tasks and event chains.

Clock speed increased to 300 MHz
Original 200 MHz yields utilizations above 100%

2 priority bands: Same priority for Write and
Read
3 priority bands: Read at middle priority, Write
at high priority

Priorities with Implicit and LET

Instructions always execute in a lower priority band

Two types of offsets (ɸ)
assignment for LET

LET-Static: Offsets are set equal to periods
LET-Dynamic: Offsets so that WCRTs of
write operations equal to the periods

Instructions_1stimuli

6 [Tmin ,Tmax]
Instructions_2 Instructions_3

AMALTHEA Task

M

Labels read

M M M M M

Runnable_3Runnable_2Runnable_1

External
event

6 Tmin

End-to-end deadline = D

Step t11

Labels written

C11

Worst-case
memory access cost

Step WCET as instructions +
worst-case memory accesses

Step t12 Step t13

C12 C13

All runnables

Implicit memory access model

All reads All writes

External
event

6 Tmin

All reads
stept11

(a)

(b)

C11

All runnables step t12
All writes

stept13

C12 C13

LET memory access model

A single step t11
C11

External
event

6 Tmin

F13

mailto:jrivasco@ulb.ac.be
http://unican.es
http://mast.unican.es
http://mast.unican.es
mailto:jrivasco@ulb.ac.be
http://unican.es

