
Optimized Deadline Assignment and Schedulability Analysis for Distributed
Real-Time Systems with Local EDF Scheduling

Juan M. Rivas, J. Javier Gutiérrez, J. Carlos Palencia, and Michael González Harbour

Computers and Real-Time Group, Universidad de Cantabria, 39005-Santander, SPAIN
{rivasjm, gutierjj, palencij, mgh}@unican.es
Abstract1

The assignment of scheduling parameters under the Earli-
est Deadline First (EDF) scheduling policy is trivial in sin-
gle processor systems because deadlines are used directly.
However, it is still difficult to find a feasible deadline as-
signment for EDF distributed systems when the utilization
levels of the CPUs and communication networks are pushed
near to their limits. Most distributed applications specify
end-to-end deadlines for each transaction and there are no
individual deadlines assigned to their tasks or messages.
This paper presents a new heuristic algorithm, called HOS-
DA (Heuristic Optimized Scheduling Deadline Assign-
ment), for optimizing the assignment of deadlines to tasks
and messages in distributed hard real-time systems. The al-
gorithm is based on HOPA (Heuristic Optimized Priority
Assignment), a previous method for the assignment of pri-
orities in fixed priority distributed systems. The results of
the proposed algorithm are compared with two other algo-
rithms that exist for solving the same problem, and show
that a utilization increase of up to 18% is possible. The pa-
per also proposes a new schedulability analysis technique
for EDF distributed systems with local scheduling dead-
lines.

1. Introduction
Distributed real-time systems are increasingly important

in today's embedded systems, since low-cost networking
facilities allow the interconnection of multiple devices and
their controllers into a single large system. The system's
software is composed of concurrent tasks that are often
statically allocated to processing nodes where each task
may exchange messages with other tasks in the same pro-
cessing node or in a different one.

Although fixed priority scheduling is the most popular
on-line scheduling policy, usage of the Earliest deadline

first (EDF) policy is starting to get more attention in indus-
trial environments, given its benefits in terms of increased
resource usage. Analysis techniques are available to deter-
mine whether a given system, either single processor or
distributed, will meet all of its timing requirements. EDF is
now available in real-time languages like Ada 2005 [21] or
RTSJ [23]. It is available in real-time operating systems
such as SHaRK [18] or ERIKA [4], and has been imple-
mented at the application level in OSEK/VDX embedded
operating systems [2]. There are also real-time networks
using EDF for scheduling messages, for instance in general
purpose networks [3], or in the CAN Bus [14]. Given its
maturity, it is expected that the number of industrial appli-
cations using EDF will increase in the near future.

One of the problems for scheduling distributed real-time
systems is finding an assignment of scheduling parameters
that leads to a feasible scheduling. This problem is fully
solved for single processor systems. However, most timing
requirements for distributed transactions are in the form of
end-to-end deadlines, and finding scheduling parameters
for the tasks and messages that constitute the transaction
has no known optimum solution other than an intractable
brute-force mechanism.

Different heuristics that can provide acceptable solu-
tions to the assignment of scheduling parameters in a rea-
sonable time have been studied for fixed priorities:
simulated annealing or genetic algorithms can be used, as
general-purpose optimization techniques; in [6] an algo-
rithm called HOPA (Heuristic Optimized Priority Assign-
ment), based on iteratively applying response time analysis
(RTA), is shown to usually find better solutions than simu-
lated annealing, in less time. There are also some algo-
rithms for EDF that distribute end-to-end deadlines into
individual deadlines for tasks and messages. The technique
presented in [10] tries to reduce the number of missed
deadlines in soft real-time systems. In [8][9] the assign-
ment of deadlines is solved together with the allocation of
tasks to processors; only a subset of the tasks are con-
strained by predetermined assignments to specific proces-
sors while the others can be allocated by the algorithm in
order to make the system schedulable with the deadlines

1. This work has been funded in part by the Spanish Ministry of
Science and Technology under grant number TIN2008-06766-C03-03
(RT-MODEL), and by the IST Programme of the European Commission
under project FP6/2005/IST/5-034026 (FRESCOR). This work reflects
only the author’s views; the EU is not liable for any use that may be made
of the information contained herein.
1

previously assigned. Other works, like the one proposed in
[7], deal with strategies to analyze the schedulability of the
distributed system based on pipelines, which is a restrictive
model.

In [11], Liu proposes four basic strategies for assigning
deadlines in EDF distributed systems. However these are
not iterative algorithms incapable of improving on the ini-
tial assignment. In this paper we explore a new heuristic
algorithm that tries to reuse some of the ideas of HOPA [6].
We call the new algorithm HOSDA (Heuristic Optimized
Scheduling Deadline Assignment), and its goal is to find a
feasible assignment of deadlines in a real-time distributed
system by distributing end-to-end deadlines into intermedi-
ate deadlines, and by iterating over response time analysis
to improve on the solution found.

In distributed EDF scheduling it is possible to find two
kinds of schedulers: global-deadline schedulers have their
deadlines referenced to the arrival of the event that releases
the transaction, possibly in a different resource; local-
deadline schedulers have deadlines referenced to the
release time of each task in its own processing resource.
Global-deadline schedulers require clock synchronization
among all the processing resources involved, and the preci-
sion of the deadlines depends on the precision of the clock
synchronization mechanism. While some systems do have
precise clock synchronization this is not always the case.
Local-deadline schedulers just use the local clock of each
processor and are more general and easier to implement.
The techniques proposed in [8][9][11] for assigning dead-
lines are based on local-deadline schedulers, and [10] used
global deadlines.

It is interesting to notice that current response-time anal-
ysis techniques for EDF [20][13] are developed for global-
deadline schedulers. Since local-deadline schedulers are
more useful to general distributed platforms, in Section 3
we show how to adapt RTA techniques to support local-
deadline schedulers. These RTA techniques are the basis
for the HOSDA deadline distribution algorithm that we
propose in this paper. As we will see, HOSDA outperforms
the basic algorithms.

The paper is organized as follows. In Section 2 we pro-
vide a quick review of the model that we use for the distrib-
uted system, and we briefly describe the state of the art for
the analysis techniques. Section 3 describes the proposed
analysis algorithm for EDF with local scheduling dead-
lines. In Section 4 we show the details of the heuristic algo-
rithm for optimizing the assignment of deadlines in
distributed real-time systems. Section 5 evaluates the
results of our algorithm by comparing them with those
obtained by current deadline distribution strategies, show-
ing that in most cases our algorithm finds better solutions

in a reasonable time. Finally, in Section 6 we give our con-
clusions.

2. System Model and Current Analysis
Techniques

For our system model we will use the one described in
[6], that is, we’ll consider a task model with periodic dis-
tributed transactions. Every transaction instance (transac-
tion job) is released by the arrival of an external event, and
each task job is released once the previous task in the trans-
action finishes its execution, so a precedence relation
inside the transaction is imposed. We denote the i-th trans-
action as Γi. We assume that all event sequences that arrive
to the system are known in advance, and that tasks are stat-
ically assigned to processors (similarly messages to com-
munication networks). Since the analysis of message traffic
on the networks can be carried out using techniques that
are used in the CPU (plus a small amount of non preemp-
tion), for simplifying purposes, we will treat messages as if
they were tasks executing in a processor.

The timing requirements that we consider are end-to-
end deadlines (Di) that start at the transaction job’s period,
and must be met by the final task in the transaction. Each
task also has an associated local deadline, dij, which is rela-
tive to the release time of the task job, and a global dead-
line, Dij, which is relative to the start of the transaction
job’s period.

Figure 1 shows an example of one of these transactions,
with just three tasks, each executing in a different resource
(two CPUs and one network in this case). The external
event that releases the transaction is labeled ei.

For each task τij job we define its response time as the
difference between its completion time and the instant at
which the period of the transaction job started, tn. The
worst-case response time will be called Rij.

Tasks after the first one are affected by the variability of
the response times of the preceding tasks in the transaction.
This implies that every task may have release jitter, which
we will call Jij. If we conservatively assume that best case
execution times are zero, the best case response time of any
task is zero and therefore the release time of the n-th job of

Figure 1. System model

Network CPU-2CPU-1

τi1
ei τi2 τi3

di2
Di2

Di3=Di
2

task τij, , is in [tn ,tn+Jij] with Jij being equal to the
worst-case response time of the previous task, Ri,j-1.

We will assume that task synchronization is achieved
using a hard real-time synchronization protocol (such as
Baker’s protocol [1]). The effects of this synchronization is
modelled by a blocking term, Bij.

This model described here is well-suited to represent a
large number of real-time architectures that are found in
practice. For example, if the system is using a client-server
approach, each portion of a task that invokes a service from
a remote server may be decomposed into the following
activities: the activity before invoking the service, the mes-
sage sent to the server, the server's activity, the reply mes-
sage, and the activity after invoking the server.

There are different analysis techniques that can be used
to analyze a system model like the one proposed here
[20][13][15][16]. However, all these techniques rely on
global-deadline schedulers, and for that reason, here we
develop a new analysis to address local-deadline schedul-
ers.

3. EDF Response-Time analysis for Local
Deadlines

In this section we will extend the holistic analysis
[20][22] for EDF distributed systems to support local dead-
line schedulers. Even though the new analysis is based on
similar principles, the underlying model and the resulting
equations are different.

In the holistic analysis we assume for each analysis step
that every task is independent of the other tasks, even from
those belonging to the same transaction. After each analy-
sis step, the dependencies are captured into the jitter terms
of each task.

Response time analysis is based on the creation of the
longest busy period, found from a critical instant. The fol-
lowing theorem helps us to find the critical instant for a
task in the context of the independent tasks assumption. It
was proven by Spuri [19] for global deadlines but we adapt
it to local deadlines.

Theorem 1. The worst-case response time of a task τab
is found in a busy period in which each task τij in the same
processor (different from τab) is scheduled such that its
first job that is inside the busy period is released at the
beginning of that busy period, after having experienced its
maximum jitter (i.e., the start of the corresponding task
job’s period was Jij time units before the start of the busy
period), and the remainder of the jobs are released with the
minimum jitter that makes the job start inside the busy
period.

Proof: The proof can be found in [17] and is omitted
here because it is similar to the one provided by Spuri in
[19].

Note that, contrary to the other tasks, releasing the ana-
lyzed task at the start of the busy period may not lead to its
worst-case response time. So, the critical instant for a task
is found in a busy period that is started by the simultaneous
release of all tasks except perhaps the one under analysis.

Under the conditions of theorem 1, the worst-case con-
tribution of a task τij to a busy period of length l when the
deadline of τab occurs at instant D is [17]:

where pl is the number of releases of τij in the busy period:

and pD the number of releases with deadline before or at D:

Using this expression we can calculate the worst-case
response time of task τab. Unfortunately, we don't know
how to phase the release time of τab in relation to the busy
period, but it is easy to see that the worst case situation
must be found when the release time is placed at the begin-
ning of the busy period, or at an instant such that the dead-
line of the analyzed job of τab coincides with the deadline
of a task τij’s job. The set of instants, Ψij, at which the
deadline of τab’s job coincides with the deadlines of one of
the task jobs in the busy period is:

where L corresponds to longest busy period, calculated as:

This set Ψij must be augmented with the deadlines corre-
sponding to task τab

j 1≠

Wij l D,() min pl pD,
⎝ ⎠
⎛ ⎞ Cij⋅= (1)

pl
l Jij+

Ti
-------------= (2)

pD

0 if D dij<

Jij D dij–+
Ti

---------------------------- 1+ otherwise
⎩
⎪
⎨
⎪
⎧

= (3)

Ψij p 1–()Ti Jij dij+–{ }∪= p∀ 1… L Jij+
Ti

---------------=

(4)

L L Jij+
Ti

--------------- Cij⋅
τij∀

∑= (5)

Ψab p 1–()Ta dab+{ }∪= p∀ 1… L
Ta
-----= (6)
3

And so the full set of situations for which τab has to be
analyzed corresponds to those releases whose deadline is in
the set

Each potential release time for τab is obtained by sub-
tracting dab from each value in Ψ. Checking the response
times under all these release times we can find the one that
causes the worst-case response time of the task. Given that
there may be several releases of τab in the busy period, we
must analyze them all. For each value , the comple-
tion time of release p of τa, , can be calculated by
adding the worst-case contribution of all tasks in the same
processor, and the blocking term:

The worst-case response time is calculated by subtract-
ing the start of the job’s period from the resulting comple-
tion time:

For each value of p, we only need to check the values of
ψ in one period, because if the release time corresponding
to ψ was greater than the corresponding period, then we
would be analyzing another job with a different value of p.
This allows us to restrict the set of values to be checked:

Finally, to calculate the worst-case response time of task
τab we must determine the maximum response times within
all the potential release times examined:

We can now feed these response times into the holistic
analysis loop like in [20], obtaining new jitter values from
the response times and repeating the analysis until a stable
solution is obtained. Since the dependencies of response
times on jitters are monotonically increasing, the algorithm
is known to converge to the final solution, except when the
utilization is close to 100% and in special cases that experi-
ence shows that are uncommon.

4. Heuristic Algorithm for Optimized
Deadline Assignment

Paper [6] proposes the HOPA algorithm that, unlike
general-purpose optimization algorithms such as simulated
annealing, uses knowledge of the factors that influence the

timing behavior to find an optimized solution to the prior-
ity assignment problem in fixed-priority distributed sys-
tems.

HOPA is based on the distribution of the global dead-
lines of each transaction among the different tasks that
compose it. Once each task is assigned an artificial local
deadline, deadline monotonic priorities are assigned in
each processing resource and an analysis of the whole sys-
tem is carried out. As a result of the analysis, new local
deadlines are calculated. The iteration proceeds until a
schedulable solution is found or some stopping condition is
reached.

In this section we propose a new heuristic algorithm
called HOSDA which is the adaptation of HOPA to sys-
tems scheduled by EDF. The objective is to check if the
basic method to calculate the artificial deadlines that lead
to schedulable solutions for fixed priorities can also be
used to assign local scheduling deadlines for EDF distrib-
uted systems. From a high-level point of view, the algo-
rithm is:
algorithm HOSDA is
begin

assign initial scheduling deadlines;
loop

calculate worst-case response times;
exit when some stopping criterion;
calculate new scheduling deadlines;

end loop;
end HOSDA;

The initial scheduling deadlines should be assigned in
some way that preserves the global deadlines:

where:
dij is the local scheduling deadline of task τij.
pri(j) is the set of tasks preceding task τij in the transaction i

to which it belongs, including itself.
Dij is the global deadline (intermediate or end-to-end) of

task τij.
The proportional deadline assignment algorithm pro-

posed in [11] can be used as the initial deadline assignment.
After all the local scheduling deadlines have been

assigned, the system is analyzed using the technique
described in Section 3. To avoid convergence problems or
very long calculations that the holistic analysis may have
when utilizations are very high, we have added a termina-
tion condition to the holistic analysis that makes it stop
when the response time of a task exceeds the imposed
deadline by a configurable factor. In this way we bound
and shorten the analysis time and we assure that the dead-
line assignment algorithm can continue working. If the

Ψ Ψi j Ψ∪ ab= (7)

ψ Ψ∈
wab

ψ p()

wab
ψ p() Bab pCab Wij wab

ψ p() ψ,()
ij ab≠∀
∑+ += (8)

Rab
ψ p() wab

ψ p() ψ dab– Jab–()–= (9)

Ψ∗ ψx Ψ∈ p 1–()Ta dab+ ψx pTa dab+<≤{ }=

(10)

Rab max Rab
ψ p()()= p∀ 1… L

Ta
-----= ψ Ψ∗∈∀, (11)

Dij dik
k pri j()∈

∑= (12)
4

solution is not schedulable, new scheduling deadlines are
calculated by redistributing the global deadlines among the
tasks of each transaction.

The redistribution of local deadlines uses the concept of
“excess” of each task which, intuitively, and in the same
way than in HOPA, measures the distance that separates
each task from schedulability.

The original algorithm for fixed priorities [6] had two
different definitions for the excess of a particular task τij,
“excess of response time”, which is based on the difference
between the local response time and the local deadline, and
led to faster solutions; and “excess of compute time”, based
on the calculation of the slack time, and led to more sched-
ulable solutions. Currently we do not use the excess of
computation time, since it requires large amounts of com-
putational time, except for a very small range of examples.

In [6], 2 definitions for the Excess of Response Time
were presented:

Where:
ΔRij is the difference between the worst case global

response times of the task before τij that has a global
deadline and the task after τij that also has a global
deadline.

ΔDij is the difference between the global deadlines of the
tasks before and after τij that have a global deadline.

If there is no previous task with a global deadline, then 0 is
used to find the difference in ΔRij and ΔDij. In the common
case when there is only a single end-to-end deadline for the
transaction all the ΔRij terms of the same transaction have
the same value related to the response time of the last task
in the transaction, , and the same applies to

.
Both definitions of excess of response time can lead sep-

arately to feasible deadline assignments. In our preliminary
tests, usage of definition (2) led to slightly better results
(around 3% more schedulable resource utilization achieved
on average), so this is the recommended option to try first.

We use the same definitions as in [6] for the excess of
each processing resource, exc(PRk); the maximum excess
of all the processing resources, Mex(PR); and the maxi-
mum of the excesses of all the tasks belonging to a particu-
lar transaction responding to external event ei, which we
call Mex(ei).

Given these definitions of excess times, we calculate the
new scheduling deadline for each task dij(new) (14) as a
function of the old scheduling deadline for that task, the
excess for that task, the excess for the resource to which
that task belongs, and the values of two empirical constants
kR and ka. Like in HOPA, once the new local deadlines dij
have been obtained for all the tasks in the transaction, we
adjust them proportionally to make them fit into the global
deadlines.

The kR and ka constants, like in HOPA, control the rela-
tive influence of the processing resource and task compo-
nents, respectively, in the calculation of the new deadline.
In order to empirically determine which values give the
best results, extensive preliminary experiments were made.
These experiments consisted of applying the HOSDA algo-
rithm over a wide set of examples. This examples are com-
prised of systems with different number of processors
[2,15], transaction lengths (number of tasks between 1 and
the number of processors), periods (differences of up to 3
orders of magnitude), and end-to-end deadlines (between
the period, T, and 2*T*number of processors). For each
example generated, different sets of values for kR and ka
were applied. We found out that higher utilizations could
be reached if the values for this parameters were between
1.0 and 3.0. Normally, in the HOSDA algorithm we start
with values of kR=ka=1.5, and then, after a given number of
iterations, we change both values to 2.0, 2.5, 3.0, etc., until
one stopping condition is reached. The stopping conditions
are:
•A schedulable solution has been found.
•Two consecutive deadline assignments are identical (in

which case the algorithm would continue providing the
same solution).

•Since the algorithm is not guaranteed to converge to a
solution, a Maximum Number of Iterations is defined.
This number is configurable and, for a given size of the
system, it sets a limit to the time that the user is willing to
wait for obtaining a solution.
As in HOPA, after the algorithm finds a deadline assign-

ment that makes the system schedulable, it is capable of
finding a better optimized solution by executing more iter-
ations.

5. Evaluation of the Heuristic Algorithm
In this section we compare the performance of the heu-

ristic algorithm proposed with existing techniques for
deadline distribution described by J. Liu in [11]. We choose

exc τi j()

Rij Jij– dij–()
RΔ ij

DΔ ij
---------- 1()

or

Rij dij–()
RΔ i j

DΔ ij
---------- 2()

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

= (13)

ΔRij Rimi
=

ΔDij Di=

dij new() dij old() 1
exc PRk()

kR Mex PR()⋅
--------------------------------+⎝ ⎠

⎛ ⎞ 1
exc τi j()

ka Mex ei()⋅
----------------------------+⎝ ⎠

⎛ ⎞=

(14)
5

the best two of them: Proportional Deadline (PD) and Nor-
malized Proportional Deadline (NPD).

In order to carry out the comparison between the
HOSDA algorithm and the two selected techniques (PD,
NPD), we have implemented and integrated the deadline
assignment algorithms and the analysis technique into the
MAST suite of tools [12]. This allows us to use both a pre-
cise model [5] to describe the systems under test and a uni-
form way to check the results. Since MAST is free
software this also makes the implementation of the tech-
niques available to the community.

A generator of examples has also been developed to test
the execution of the algoritms over a wide spectrum of
cases. This generator starts with a base system, character-
ized by the number of processors and transactions, and for
each generated example, it assigns a random number of
tasks and periods to each transaction. The WCET of each
task is sequentially increased from a very low utilization
until the utilization of the system reaches 100%. Systems
generated by this tool are stored to be processed later.

In order to illustrate the performance of the HOSDA
algorithm, we have chosen three base systems with differ-
ent levels of complexity: a Small, Intermediate, and Big
Size Example (SSE, ISE, and BSE respectively). Table 1
shows the number of processors and transactions for each
base system. The number of tasks in each transaction varies
randomly from 1 to the number of processors, and can be
different in each example. We have generated 100 exam-
ples for each base system, and we apply five types of end-
to-end deadlines to the transactions: deadline equal to
period (D=T); deadline proportional to the period and the
number of processors (N) traversed by the transaction mul-
tiplied by 0.5 (), one (), or two
(); and finally a random deadline between T
and .

Table 2 shows the average maximum schedulable utili-
zation reached by the algoritms for all the case studies. In
this table we can see that, on average, HOSDA can sched-
ule systems with higher utilizations than PD and NPD.
However, there is a small amount of examples in which
HOSDA, at its first attempt with the constants selected, has
not been better than NPD. Of course, HOSDA is always
better or equal than PD, as this is the starting assignment.

HOSDA has been applied to many more examples with
very similar results and was able to increase the processor

utilization by up to 18% in some of these examples. The
best results are obtained in systems with deadlines larger
than periods, usually in those in which deadlines are pro-
portional to the period multiplied by the number of tasks in
the transaction.

The CPU time spent by each algorithm to find a feasible
solution was measured for all examples, and it was found
that HOSDA took, on average, an order of magnitude more
time to reach a solution than PD and NPD. For the PD and
NPD algorithms this CPU time is composed of the time
needed to make the assignment of the deadlines plus the
time to run the schedulability analysis over the solution
proposed. The time spent by HOSDA depends on the num-
ber of iterations needed to find the solution, which could
lead to repeat the analysis potentially many times.

In some cases, the kR and ka constants used in the calcu-
lation of the excess (14) can be rebalanced to minimize the
influence of the excess in the resource (e.g., by assigning
values of kR=10ka, or kR=100ka) or the excess in the trans-
actions (e.g., by assigning values of ka=10kR, or ka=100kR),
which increase the possibility of reaching a feasible solu-
tion in some examples. As future work we plan to make a
broad study of the impact that the k pair of values have in
the schedulability of distributed systems, in order to be able
to automate the selection and application of different sets
of ka and kR, for the purpose of seeking better deadline
assignments.

6. Conclusions
In this paper we propose a heuristic algorithm for

assigning scheduling deadlines in distributed hard real-time
systems. It is an adaptation to EDF of a previous algorithm
called HOPA, designed for fixed priorities. We have shown
that this method can find feasible optimized solutions in a
reasonable amount of time, even in situations where the
utilization of the resources is high and thus the number of
solutions is small.

Since HOSDA is based on iteratively applying response
time analysis and previous techniques for EDF scheduling

Table 1. Base systems for the examples generator

SSE ISE BSE

Number of Processors 3 5 8

Number of Transactions 6 8 12

D 0.5 N T⋅ ⋅= D N T⋅=
D 2 N T⋅ ⋅=

2 N T⋅ ⋅

Table 2. Average Maximum Schedulable Utilization (%)

T NT/2 NT 2NT Random

SSE
HOSDA 60.2 60.8 92.7 98.8 93.9

PD 59.0 57.7 84.3 97.6 88.9

NPD 58.0 56.7 83.9 97.7 88.0

ISE
HOSDA 43.2 57.5 84.3 98.3 86.8

PD 42.0 52.5 73.2 89.9 76.4

NPD 41.4 52.4 72.8 90.0 76.4

BSE
HOSDA 34.6 59.5 75.8 88.1 76.1

PD 33.8 53.1 67.5 78.0 67.5

NPD 32.8 53.0 66.8 77.3 66.6
6

were based on global deadlines, in this paper we have
extended the analysis techniques to support local deadlines,
which are more useful in distributed environments because
they do not require global clock synchronization.

We have compared HOSDA with two other reference
algorithms previously proposed to address the same prob-
lem but which are not able to optimize. The results of the
comparison are that our method finds feasible solutions in
many cases where these other methods fail. This is espe-
cially noticeable when utilizations are high or when the
deadlines of the transactions are larger than the periods of
the events that release them.

The quality of the results obtained by HOSDA are quite
similar to those obtained by HOPA. We are currently work-
ing on comparing whether HOPA for fixed priorities or
HOSDA for EDF can find better solutions to schedule the
same set of transactions. We are also working on the
assignment of scheduling parameters in mixed systems
(systems with EDF and FP scheduled processing
resources). Finally, we also plan to test HOSDA with more
advanced RTA techniques, such as those based on offsets,
and to give HOSDA the capability to manage deadlines
that cannot be changed or that must be less than or equal to
a specific value (preassigned scheduling deadlines).

REFERENCES
[1] T. P. Baker, “Stack-based scheduling for realtime

processes,” Real-Time Systems, v.3 n.1, pp.67-99, March
1991

[2] Claas Diederichs, Ulrich Margull, Frank Slomka, and
Gerhard Wirrer, “An application-based EDF scheduler for
OSEK/VDX,” Proceedings of the conference on Design,
Automation and Test in Europe, Munich (Germany), pp.
1045-1050, 2008.

[3] M. Di Natale, and A. Meschi, “Scheduling Messages with
Earliest Deadline Techniques,” Real-Time Systems, 20, pp.
255-285, Kluwer Academic Publishers, 2001.

[4] ERIKA (Embedded Real tIme Kernel Architecture) home
page, http://erika.sssup.it/

[5] M. González Harbour, J.J. Gutiérrez, J.C. Palencia, and J.M.
Drake, “MAST: Modeling and Analysis Suite for Real Time
Applications,” Proceedings of 13th Euromicro Conference
on Real-Time Systems, Delft (The Netherlands), pp. 125-
134, 2001.

[6] J.J. Gutiérrez, and M. González Harbour, “Optimized
Priority Assignment for Tasks and Messages in Distributed
Real-Time Systems,” Proceedings of 3rd Workshop on
Parallel and Distributed Real-Time Systems, Santa Barbara
(California), pp. 124-132, 1995.

[7] Praveen Jayachandran, Tarek Abdelzaher, “A Delay
Composition Theorem for Real-Time Pipelines,”
Proceedings of 19th Euromicro Conference on Real-Time
Systems (ECRTS'07), pp. 29-38, IEEE, 2007.

[8] Jan Jonsson, and Kang G. Shin, “Robust Adaptive Metric for
Deadline Assignment in Distributed Hard Real-Time
Systems,” Real-Time Systems, 23, pp. 239-271, Kluwer
Academic Publishers, 2002.

[9] Jan Jonsson, and Kang G. Shin, “Deadline Assignment in
Distributed Hard Real-Time Systems with Relaxed Locality
Constraints,” Proc. of the IEEE Int'l Conf. on Distributed
Computing Systems (ICDCS'97), Baltimore (Maryland) pp.
432-440, 1997.

[10] B. Kao, and H. García-Molina, “Deadline Assignment in a
Distributed Soft Real-Time System,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 8, No. 12, pp. 1268-
1274, 1997.

[11] J. Liu, “Real-Time Systems,” Prentice Hall, 2000.
[12] MAST home page, http://mast.unican.es/
[13] J.C. Palencia, and M. González Harbour, “Offset-Based

Response Time Analysis of Distributed Systems Scheduled
under EDF,” Proceedings of the 15th Euromicro Conference
on Real-Time Systems, ECRTS, Porto (Portugal), 2003.

[14] P. Pedreiras, and L. Almeida, “EDF Message Scheduling on
Controller Area Network,” Computing & Control
Engineering Journal, 13(4), pp. 163-170, 2002.

[15] R. Pellizzoni, and G. Lipari, “Improved Schedulability
Analysis of Real-Time Transactions with Earliest Deadline
Scheduling,” Proceedings of the 11th IEEE Real Time on
Embedded Technology and Applications Symposium,
RTAS, pp. 66 - 75, 2005.

[16] R. Pellizzoni, and G. Lipari, “Holistic analysis of
asynchronous real-time transactions with earliest deadline
scheduling,” Journal of Computer and System Sciences,
Volume 73, Issue 2, pp. 186-206, 2007.

[17] Juan M. Rivas, et al. “Optimized Deadline Assignment for
Tasks and Messages in Distributed Real-Time Systems”.
Technical report, University of Cantabria. URL: http://
www.ctr.unican.es/publications/jmr-jjg-
jcp-mgh-2009a.pdf

[18] S.Ha.R.K. (Soft Hard Real-Time Kernel) home page,
http://shark.sssup.it/

[19] M. Spuri, “Analysis of Deadline Scheduled Real-Time
Systems,” RR-2772, INRIA, France, 1996.

[20] M. Spuri, “Holistic Analysis for Deadline Scheduled Real-
Time Distributed Systems,” Tech. Rep. RR-2873, INRIA,
France, April 1996

[21] S. Tucker Taft, Robert A. Duff, Randall L. Brukardt, Erhard
Ploedereder, and Pascal Leroy (Eds.), “Ada 2005 Reference
Manual. Language and Standard Libraries. International
Standard ISO/IEC 8652:1995(E) with Technical
Corrigendum 1 and Amendment 1,” LNCS 4348, Springer,
2006.

[22] K. Tindell, and J. Clark, “Holistic Schedulability Analysis
for Distributed Hard Real-Time Systems,” Microprocessing
& Microprogramming, Vol. 50, Nos.2-3, pp. 117-134, 1994.

[23] RTSJ (Real-Time Specification for Java) home page,
http://www.rtsj.org/
7

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

