
High level modeling for Real-time applications with
UML & MARTE

Julio L. Medina and Alejandro Pérez Ruiz
Departamento de Electrónica y Computadores, Universidad de Cantabria. Santander, Spain

{julio.medina, alejandro.perezruiz}@unican.es

Abstract—This paper shows initial results and the research
path in a methodology to use UML & the UML Profile for
MARTE in the design of real-time applications. The modeling
constructs used are those proposed in the High Level Application
Modeling chapter of the MARTE standard. These elements are at
a high abstraction level, and hence they need to be complemented
with a number of constraints and rules of usage in order to get a
consistent set of transformations to obtain code and analysis
models automatically from them. The rules and patterns
proposed in this effort are meant to address increasingly complex
design intents. As a starting point in the methodology this paper
shows some of the basic ones, concretely the simple independent
tasking model, the passive protected data sharing, and the
distributed end-to-end flows of linear execution. The models here
defined are suitable to be transformed into both: schedulability
analysis models and code generation models. These models are
also represented in UML as a previous step to its execution, the
profiling of its execution times, and the schedulability analysis.

Keywords—code generation; modeling; UML; MARTE; model-
based schedulability analysis; MAST; Ada; real-time.

I. INTRODUCTION
Model-based software development is progressively taking

momentum in industry as one of the most promising software
engineering approaches. It helps to create and keep assets of
many kinds along the development process. It facilitates the
separation of concerns, increasing the process efficiency, and
finally empowering the quality of software.

For real-time applications, a model-based methodology can
also help to simplify the process of building the temporal
behavior analysis models. These models constitute the basis of
the real-time design and the schedulability analysis validation
processes. With that purpose, the designer must generate, in
synchrony with the models used to generate the application’s
code, an additional parameterizable model, suitable for the
timing validation of the system resulting out of the composition
of its constituent parts. The analysis model for each part
abstracts the timing behavior of all the actions it performs, and
includes all the scheduling, synchronization and execution
resources information that is necessary to predict the real-time
qualities of the applications in which such part might be
integrated. In the approach here presented, these analysis
models are automatically derived from high level design
models annotated with a minimum set of real-time features
taken from the requirements of the application in which they
are to be used. Following the generation of the application’s

code as a composition of the code of its constituent parts, the
complete real-time analysis model of the application can also
be automatically generated from the composition of the set of
real-time sub-models that form it.

The research effort that this paper presents considers the
model-based development of hard real-time applications, for
which the definition of the corresponding schedulability
analysis models is an automated result of a chain of tools and
techniques used in a model driven engineering approach. Our
previous efforts in this direction can be read in [1]. In this
context, this paper proposes the concrete modeling elements at
a high level of abstraction, useful to conceive and elaborate the
system using the Unified Modeling Language (UML) [2]. This
is a general purpose modeling language standardized by the
Object Management Group (OMG). This is used in conjunction
with its standard extensions for Modeling and Analysis of
Real-Time and Embedded systems, namely the UML Profile
for MARTE [3]. There are other model driven similar efforts
from the software engineering perspective derived from the
ASSERT project, in [4] for example UML is used, though not
fully based in standard modeling extensions like MARTE.

The most widely known use of model based development
techniques comprises the generation of code from structural
models like class diagrams. With those automations an initial
set of skeletons of the classes and structural packages that form
an application is usually easy to obtain. Also some form of
reverse engineering is available through the usage of specially
formatted “comments” placed as textual marks surrounding the
space in the code files for the “bodies” of the operations. The
final implementation code is then inserted (usually typed by
hand) between the textual marks that are managed by the code
generators. A further refinement that generates both,
specifications and bodies from models, are code generators that
use state machines for modeling the behavior of the classes.
This mechanism uses the operations of a class as message
handlers that trigger the events between states. That way the
messages from other objects can interact with the automaton of
the class, though in a non-predictable order. Then, this kind of
code generators is not consistent with the required scenario-
based description of real-time activities used for schedulability
analysis.

For this reason a different approach to the code generation
is necessary if we want to keep both models in tune in a way as
automated as possible. Our tactic for generating the code that
goes inside the marks of the structural skeletons is the use of
the behavioral models given for each operation of the class.

This work has been partially funded by the Spanish Government under
grant TIN2011-28567-C03-02 (HI-PARTES). This work reflects only the
author’s views; the funding organism is not liable for any use that may be
made of the information contained herein.

13

Fig. 1. Models and transformations used in our approach

These models are usually made just for descriptive or
documentation purposes, but there is no reason for not using
them precisely as a specification. For this labor the more
adequate modeling elements are activity diagrams. The
formalization of the textual code inside actions may be either
the standardized action language [5] of the OMG, or specific
annotations made in the target language that specify the
concrete actions to be performed.

In the context of the methodology proposed in this
approach, this paper contributes to clarify the process to use
from a software engineering point of view, and to define the
input modeling formalisms, using UML and MARTE for
expressing the needs of the designer.

The paper is organized as follows: Section 2 presents a
global view of the approach and situates the contribution of this
work-in-progress paper in its perspective. It also makes a brief
summary of the challenges, and presents related efforts.
Section 3 presents the concrete modeling elements and rules
used for modeling applications compliant to (A) the simple
independent tasking model, (B) the passive protected data
sharing and (C) end-to-end flows of linear chains of execution.
Finally some conclusions and next steps to follow in our
envisioned model based engineering approach.

II. CONTEXT OF THE MODEL-BASED APPROACH
As early mentioned, here we use UML as modeling

language and the UML standard extensions proposed by the
MARTE profile for annotating the necessary real-time aspects
at different levels of specification. A synthetic view of the
approach is shown schematically in Fig. 1.

The initial model used to describe the application and its
real-time features is constructed using the MARTE extensions
for high level application modeling (HLAM). From this
formalism, two model-to-model (M2M) transformations are
used. One, indicated as M2M_A in Fig. 1, is used to create the
UML representation of the analysis model. This transformation
is used to create a model for each real-time situation under
analysis together with the model of the processing resources,
and the workload to consider. For this model the schedulability
analysis modeling (SAM) capabilities of MARTE are used.
The other transformation, M2M_C, is used to generate an
intermediate model ad hoc for the code generation. The
intermediate model, called UMLforCode in Fig. 1, is a typical

UML object oriented generic model that comprises structural
as well as behavioral information. The behaviors of the
operations in this model are expressed by means of activity
diagrams.

The model-to-text (M2T) transformation, denoted as
M2T_MAST in Fig. 1, is used to generate the schedulability
analysis models. It is part of our previous work [1]. An eclipse
based tool [6] is available for the generation of analysis
models, the invocation of the analysis tools, and the retrieval of
results back into the modeling context. The tool then converts
SAM models into the formalisms used by MAST [7] and then
recovers its results back into the UML+MARTE model.

Another tool is also provided for generating Ada code from
the UMLforCode object oriented generic model [8]. This is a
model-to-text transformation, called M2T_ADA in Fig. 1. The
code implemented out of the combination of M2M_C and
M2T_ADA is consistent from the execution semantics point of
view with the analysis models generated out of the
combination of M2M_A and M2T_MAST. The transformation
that generates the UMLforCode model includes the necessary
instrumentation code that is used to measure and recover the
approximate values for the worst, best and average execution
times into the analysis model (a process called CT_DATA in
Fig. 1). The op_codes table will help the transformations and
tools to keep track of sections of code instrumented. Once the
analysis is performed, scheduling analysis results are back
annotated to the SAM models. These real-time configuration
data include priorities (or relative deadlines) for the concurrent
units, and priority ceilings (preemption levels or deadly floors)
for shared resources. Called CF_DATA. in Fig. 1, these data
are the configuration information in the UMLforCode
generation model.

A. Design and analysis in the software development process
From a software engineering perspective a summary of the

methodological steps to follow may be stated as:

(a) Introduction of design intent in UML using HLAM. The
definition of the models to use for this step is the aim of the
research work proposed by this work-in-progress paper.

(b) An initial schedulability analysis architectural validation
may be done using speculative values for execution times using
M2M_A in exploration mode, the extraction of schedulability
analyses models with M2T_MAST, and the execution of the
analysis tools (in this case MAST).

(c) Generation of UMLforCode model with M2M_C.

(d) Code generation (M2T_ADA) and execution in
profiling mode (to use less speculative values in the analysis).
Alternatively the code may be statically analyzed and executed
with ad-hoc worst case execution time analysis tools.

(e) Generation of the SAM model with M2M_A, which
now includes the recovered execution times (WCET)

(f) Extraction of final schedulability analysis models with
M2T_MAST, and execution of the analysis tools (i.e. MAST)

(g) Recovery of analysis results in SAM and transposition
of configuration data into the UMLforCode model.

14

(h) Generation of the final application code.

This paper proposes a way for HLAM models to be created
so that all the transformations mentioned may work correctly.
The transformations for generating UMLForCode (M2M_C)
and analysis (M2M_A) models will be our next steps.

B. Related work
Following previous efforts that have studied the design of

real-time systems using object oriented formalisms, we observe
that most of them include the specification of the concurrency
using structural models, usually at the design-for-
implementation level. These dual structural-behavioral
formalisms are made in the aim that this will help to realize
schedulability analysis with the simple tasking model in mind
and basic rate monotonic analysis (RMA) techniques later on.
Unfortunately the complexity of the mechanisms used to
generate the code makes this assumption not realistic, such as
in ROOM [9], Octopus/UML [10], ACCORD/UML [12] [13],
Comet [14], or the design model extremely constrained and
monolithic such as in HRT-HOOD [15], OO-HARTS [16].

Being a syncretism of all those mentioned, and in order to
ease the application of simple schedulability analysis
techniques, the high level application modeling constructs in
MARTE (see the HLAM section in [3]) also facilitate the use
of structural models for the specification of the concurrency.
But the interactions between them (including distribution) may
take complex patterns that require a richer model for the
analysis. Then, from the analysis perspective the end-to-end
offset based analysis techniques scale far better to deal with
these scenarios than the basic RMA tasking model. HLAM
proposes two basic building blocks, the real-time unit: RtUnit
and the passive protected unit: PpUnit. As for the behaviors in
them (the code inside the marks), due to its natural complexity
it is usually not just passive linear code that can be modeled as
a computation time; instead they include delays, and
interactions among objects and nodes, mostly when they
become formed out of a composition of distributed operations
(behavioral models). In these cases a state machine (the basic
construct used in most of the analyzed approaches) is not
directly transformable into an analysis model.

From the analysis perspective, the models that are required
to apply the modern offset-based analysis techniques, are
fundamentally scenarios. A scenario is an expression of the
(worst case) expected or observable manifestation of the design
intents (coded behaviors). This is the basis for coping with
complexity that distinguishes RMA schedulability analysis
techniques from those other strategies like the based on timed
automata or synchronous languages.

As a modeling language for this domain, the scheduling
analysis modeling section of MARTE (SAM) is also able to
express that kind of scenario models, and then it is an adequate
formalism to feed the corresponding analysis tools.
Unfortunately these scenarios are not necessarily part of the
initial specification of the system behavior. They are a means
to express: the expected stimuli, the high level expected
workload, and the end-to-end timing requirements, but they are
usually not the basic data used for design intent or code
generation drawn by the designers.

The creation of these (usually worst case) analysis oriented
scenarios in tune with the final code is actually the main duty
and a high responsibility of the real-time practitioner. In order
to help in this labor the automation tools need the model used
for code generation to have the behaviors of its operations
expressed as scenarios. For this reason the adequate input
models for the generation of the code inside the operations in
the UMLforCode model are UML activities. This is why the
tool that fills the code for the methods of the classes retrieves it
from activity diagrams.

The use of scenarios has an additional benefit. This method
helps to support the design of applications in terms of
composable parts, which are closer in granularity to the
concept of real-time objects than to the fully component-based
software engineering (CBSE) interpretation of components. In
a fully component-based approach, the creation of the analysis
models would have to be made as a combination of both,
structural elements plus their deployment. In an object-oriented
model-driven approach, this later strong form of composability
is in a higher level of abstraction, but still may benefit of the
approach here described in order to assess a variety of non-
functional properties, in our case of course the assessment of its
timing properties by means of schedulability analysis.

C. Contribution of the effort here described
The contribution of this work-in-progress paper is in the

clarification of the approach, the steps to follow in a software
engineering process, and the initial identification of rules and
concrete modeling elements in UML and MARTE so that
suitable design models may be processed by the tools that the
full model-based methodology presented comprises.

III. HIGH-LEVEL MODELING RULES
The basis for modeling with schedulability analysis in mind

is the specification of three basic models, the platform, the
logic of the application and the workload the system is
expected to support. An initial set of modeling rules, which
included those for describing the platform, was proposed in [1].
Here we enhance and extend it to address also code generation.
For those terms in italics refer to the MARTE specification [3].

A. Modeling independent tasks
In cases where tasks are independent, the basic rules for

describing the logic of the application are:

1. Each RtUnit have only one schedulableResource
(thread) on it. Its behaviors (operations) may not be
called from other RtUnits, and run under the
scheduling parameters associated to that schedulable
resource. Behaviors called in other passive classes run
under the scheduling parameters of the calling RtUnit.

2. Each RtUnit has one and only one of its operations
(UML BehavioralFeatures or behaviors) with the
stereotype RtFeature. This has an RtSpecification (a
comment stereotyped) in which at least the attribute
occKind, has to be specified. This attribute indicates
the ArrivalPattern (the triggering scheme) of the
underlying task (usually a periodic pattern).

15

3. All the RtUnits deployed in a processingResource (a
host) are handled by the same scheduler and use the
same (or fully compatible) scheduling policy.

4. Each RtUnit whose isMain attribute is set to true,
implies the presence of an execution host where the
main service of the RtUnit is deployed.

5. The attribute srPoolPolicy holds the value infiniteWait

B. Modeling share data interactions
When tasks share passive data the PpUnit modeling

construct is used, in this case these additional rules apply:

6. The ExecKind of PpUnit services is ImmediatRemote

7. All services of the PpUnit use the same protection
protocol: ImmediateCeiling or PriorityInheritance

8. The ConcurrencyPolicy of PpUnit is Guarded.

The concurrencyPolicy of the kind Concurrent might be
enabled in order to have the writer/reader ConcurrencyKind
available, but this behavior requires additional capabilities
from the analysis techniques to take really advantage of it, so in
principle it is discouraged.

C. Modeling end-to-end flows
When tasks interact by triggering one another, chains of

actions need to be ensemble. In this case the calling of the first
action (task) in the chain determines the execution periodicity
and end-to-end deadline. The following rules apply in this case:

9. The first restriction in rule 1 is here relaxed so that
operations stereotyped as RtServices of RtUnits may be
invoked by others using the SignalEvent semantics.

10. In this case, in order to have analyzable models, only
the first calling operation in the chain may have an
ArrivalPattern specified be means of its corresponding
RtFeature and its RtSpecification comment.

11. Operations in an RtUnit that are not stereotyped as
RtServices run in the context of the calling task. They
are called passive and use the CallEvent semantics.

See [1] for additional rules that apply in general in specific
phases of the development process.

The invocation of behaviors is made in activity diagrams.
sendSignalActions are used for triggering RtServices and
callActions for calling passive operations. The invocation of an
RtService that holds an arrival pattern implies the initialization
of the task (usually invoked in the main). This auxiliary code
will be automatically inserted in the activity diagrams of the
UMLforCode generation model. This will be done following
the arrival pattern of the task (usually periodic).

The constraining rules described here for this HLAM input
model are meant for ensuring (i) analyzability by means of
schedulability analysis (ii) consistency between the analysis
models and the generated code, (iii) the minimum usage of
tools and transformations, and (iv) compliance with executable
versions of UML, fUML [17] and the future standard for a
Precise Semantics of UML Composite Structures [18].

IV. CONCLUSIONS AND FUTURE WORK
This paper presents a model-based software engineering

methodology for the development of real-time applications.
Some steps in the necessary chain of tools have been realized
and this paper shows some of the basic steps missing. It
addresses the simple independent tasking model, the passive
protected data sharing, and the distributed end-to-end flows of
linear execution. The models compliant to the rules here
defined are suitable to be transformed into both: schedulability
analysis and code generation intermediate models. Next steps
include, the high level transformations into these intermediate
models, experiments, rules to handle interrupts, and tooling
support for the complete iterative engineering process.

REFERENCES
[1] J. Medina and A. Garcia Cuesta. Model-Based Analysis and Design of

Real-Time Distributed Systems with Ada and the UML Profile for
MARTE. In Proc. of the 16th International Conf. on Reliable Software
Technologies-AdaEurope 2011, LNCS 6652, pp 89-102.

[2] Object Management Group. Unified Modeling Language version 2.4.1,
OMG document formal/2011-08-06, 2011.

[3] Object Management Group, UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems, version 1.1, OMG doc.
formal/2011-06-02, 2011.

[4] Silvia Mazzini, Stefano Puri, and Tullio Vardanega. An MDE
Methodology for the Development of High-Integrity Real-Time
Systems. Proceedings of Design, Automation and Test in Europe. Nice,
France. April 20-24, 2009.

[5] Object Management Group. Action Language for Foundational UML
(Alf), Concrete Syntax for a UML Action Language. OMG document
ptc/2010-10-05, 2010.

[6] http://mast.unican.es/umlmast/marte2mast
[7] M. González Harbour, J.J. Gutiérrez, J.C.Palencia and J.M.Drake,

MAST: Modeling and Analysis Suite for Real-Time Applications, in
Proc. of the Euromicro Conference on Real-Time Systems, June 2001.

[8] http://mast.unican.es/umlmast/uml2ada/
[9] Bran Selic and Jim Rumbaugh. Using UML for Modeling Complex

Real-Time Systems. Rational white papers,
http://www.rational.com/products/whitepapers/UML-rt.pdf, March 1998

[10] Domiczi, R. Farfarakis and J. Ziegler. Octopus Supplement Volume 1.
Nokia Research Center. http://www-
nrc.nokia.com/octopus/supplement/index.html, 1999.

[11] Laila Kabous. An Object Oriented Design Methodology for Hard Real
Time Systems: The OOHARTS Approach. Doctoral Theses, School Carl
von Ossietzky, Universität Oldenburg. 2002

[12] F. Terrier, G. Fouquier, D. Bras, L. Rioux, P. Vanuxeem and A.
Lanusse. A Real Time Object Model. Presented in TOOLS Europe'96.
Paris, France. Prentice Hall, 1996

[13] A. Lanusse, S. Gerard and F. Terrier. Real-Time Modeling with UML:
The ACCORD Approach. In Selected papers from the 1st. Int. Workshop
on The Unified Modeling Language UML’98: Beyond the Notation.
Mulhouse, France, June 3-4, 1998. Pp. 319-335. ISBN:3-540-66252-9.

[14] Hassan Gomaa. Designing Concurrent, Distributed and Real-Time
Aplications with UML. ISBN 0-201-65793-7, Addison-Wesley, 2000.

[15] Alan Burns, Andy Wellings. HRT-HOOD, a structured design method
for hard real-time ADA systems. ISBN 0 444 82164 3. Elsevier, 1995

[16] Mazzini S., D'Alessandro M., Di Natale M., Domenici A., Lipari G. and
Vardanega T. HRT-UML: taking HRT-HOOD into UML. In Proc. of
8th Conference on Reliable Software Technologies Ada Europe, 2003

[17] Object Management Group. Semantics of a Foundational Subset for
ExecutableUML Models (fUML), v1.1, OMG Document: ptc/2012-10-
18. http://www.omg.org/spec/FUML/1.1

[18] Object Management Group. Precise Semantics of UML Composite
Structures, Request For Proposals. OMG Document: ad/11-12-07

16

