CAN-RT-TOP: Real-Time Task-Oriented Protocol over CAN for
Analyzable Distributed Applications

Juan Lopez Campos, J. Javier Gutiérrez, and Michael Gonzalez Harbour

Departamento de Electronica y Computadores, Universidad de Cantabria, 39005-Santander, SPAIN
{lopezju,gutierjj,mgh}@unican.es

Abstract

This paper presents the design and implementation of CAN-
RT-TOP (Real-Time Task-Oriented Protocol over CAN),
which is a high level protocol over CAN. Although the CAN
Bus uses fixed priorities, some standard protocols over
CAN assign the priorities to specific nodes by encoding it in
the destination node identifier, which produces reduced
schedulability. The protocol presented in this paper pro-
vides applications the capability of choosing the message
priorities that each task wants to use, thus increasing sched-
ulability. It has been implemented on a real-time kernel for
embedded systems called MaRTE OS.

1. Introduction!

CAN, acronym of Controller Area Network is a serial
communication protocol initially developed by BOSCH [1]
and currently maintained by CAN in Automotion (CiA)
[2], which supports efficiently distributed control tasks
with real-time characteristics and strict reliability require-
ments. The CAN bus can be used to send and receive small
control messages of up to 8 data bytes at speeds up to 1
Mbps even in noisy ambients. Each message has an associ-
ated identifier or fixed priority that is used to arbitrate
access to the bus. Each bit of the message priority is arbi-
trated in sequence, so if all priorities are unique there are
no collisions in accessing the bus.

To access the CAN bus from the application it is useful
to use a high level protocol such as CANOpen [2], CAN-
Kingdom [3], OSEK-COM [4], or SDS [5]. In CANOpen
there is a restriction that the priority of the message is
assigned in a configurable but fixed manner to the destina-
tion communication node and function. This policy is usu-
ally appropriate for device-oriented communication. But in
task-oriented communication, when a node is a processor
executing many concurrent tasks, there may be different
timing requirements imposed on the messages which

1. This work has been funded in part by the Comision Interministerial
de Ciencia y Tecnologia (CICYT) of the Spanish Government under grant
number TIC2002-04123-C03-02 (TRECOM), and by the IST Programme
of the European Commission under project IST-2001-34820 (FIRST).

should not depend on their destination node. Because in
CANOpen, all the messages that are sent to the same desti-
nation object have to share the same priority there is a
severe deviation from the optimum priority assignment,
with the corresponding loss in schedulability.

CANKingdom has a much more flexible way of assign-
ing priorities, but is a relatively complex protocol that
requires a central master and an initialization phase to con-
figure the network.

In OSEK-COM it is possible to assign deadlines to mes-
sages, but there is no explicit mechanism to assign priori-
ties. In distributed transactions better results can be
obtained by having the choice to freely assign priorities to
the messages and tasks of the transaction [8].

The SDS high-level protocol associates the priority of
the messages with the logical addresses of the CAN con-
troller chips. This restriction does not allow a flexible pri-
ority assignment, and is precisely what we want to avoid.

With CAN-RT-TOP we have designed a simple protocol
and its corresponding driver that is task-oriented, in the
sense that multiple concurrent tasks executing in the same
node can choose the priorities of the messages they send. In
fixed priority scheduling it is a well established concept
that priority is related to the urgency of an activity, not to
its importance. With this approach we are able not only to
communicate with sensors or actuators, but also to commu-
nicate among control tasks, as long as there are no require-
ments for high volumes of data that would not be
appropriate for the CAN bus. The configuration is done in
a static way to avoid the complexity of a dynamic initial-
ization phase.

In the industrial automation applications for which the
protocol is designed there is no need for message broad-
cast, but this would be a fairly simple extension for the
future.

We have implemented this real-time communication
protocol in MaRTE OS [6], which is a real-time kernel for
embedded systems on which our research group has been
working in the last few years. The protocol proposed in this
work is, from a functional point of view, similar to RT-EP
[7], a real-time protocol over ethernet also included in

MaRTE OS. Our measurements show that when the
requirements for communications imply short messages,
the CAN bus outperforms the RT-EP ethernet protocol.

The paper is organized as follows. Section 2 describes
the CAN-RT-TOP protocol. In Section 3 we give some
details about how it is implemented. Section 4 discusses
the usage in a distributed application. Finally, Section 5
gives our conclusions.

2. CAN-RT-TOP Description

The objective of CAN-RT-TOP is to make a simplified
real time protocol over CAN in which the applications
involved can choose the priorities of their messages inde-
pendently of the destination CAN node device. When
designing the protocol, we decided to include the following
information to be sent with each message:

* Priority: It is global priority used to encode the urgency
of the message. It contains only a priority value, indepen-
dent of the destination node and function. Because CAN
priorities are ordered inversely to their integer value and
user priorities go the opposite way, we have to perform
the required mapping of priorities.

Destination Node: When sending a message to a destina-
tion object it is important to specify the destination node,
so that the CAN controller chips can filter out those mes-
sages that are not addressed to them. This field must have
at least one distinct value for each CAN controller chip
in the system.

Communication Channel: Because at the receiving node
there may be multiple concurrent tasks receiving mes-
sages, we need to identify the destination task. We do
this by creating the concept of a communication channel.
A channel would be a logical endpoint for the communi-
cation, so that the sender can specify the channel and the
receiving task can choose the channel from which it
wants to read messages.

We must determine where to place the three protocol
information fields inside a CAN frame. These frames have
four relevant fields for us, as shown in Figure 1.

| IDENTIFIER | RTRl DLC | DATA |

Figure 1. CAN frame format

The Identifier is used for the bus arbitration and has 11
or 29 bits, respectively in the standard or extended frame
format. The RTR bit is used to request retransmission. The
DLC bits are used to define the amount of data bytes of the
Data field. Although some protocol information like the
communication channel could be sent in the Data field, the
amount of space for the user messages is so small that we
decided to include all the protocol information inside the

Identifier field. This also helps in configuring the identifi-
ers, because there is a requirement that all identifiers are
different, so that it is not possible to simultaneously try to
transmit two messages with the same identifier.

Because arbitration in the CAN bus is done bit by bit
beginning from the most significant bit of the identifier, it
is important to place the Priority information in the most
significant part.

Placement of the Destination Node information depends
on the filtering capabilities of the CAN controller chips. By
filtering out the messages that are not addressed to a partic-
ular controller we reduce the CPU overhead because we
only accept messages that are addressed to that particular
node. The filtering service depends on the manufacturer
and is not standardized. In the chip we have used, Philips
SJA1000, the filtering service is applied to all or several of
the identifier bits, depending on the operating mode. In the
most restrictive mode, the mask can be placed only for the
8 most significant bits.

The Communication Channel information does not need
to be placed inside the range of bits where the CAN filter-
ing service is applied. So the preferable order in the CAN-
RT-TOP fields is as shown in Figure 2: Priority, Destina-
tion Node, and Communication Channel.

Identifier
7le]s]a]3] 2] 1
Destination Node | Communication Channel

Bitnumber] 11 [10] 9 [8
Field Message Priority

Figure 2. Fields in a CAN Frame with 11 bits identifier

The number of bits reserved for each field can be deter-
mined by the user via a configuration process in order to
adapt the protocol to the specific application requirements.
If the configuration with 11 bits identifiers is chosen we
must make the best use we can out of them.

3. CAN-RT-TOP Implementation

We have implement CAN-RT-TOP in a character driver
in MaRTE OS [6]. In order to make the protocol com-
pletely independent of the CAN controller chip used, the
driver is divided in two well separated parts: one contain-
ing the protocol itself, and another one containing the func-
tions needed to manage the CAN controller chip. These
two parts are connected with an abstract interface, so in
case another CAN controller chip would be used it would
be only necessary to change this small part of the driver.
This makes the protocol completely portable between CAN
controller chips.

The driver has six functions available for the user: open,
close, read, write, read_bus_status and set_read channel.
The four first functions are regular POSIX primitives,

while the last two are implemented via device control calls
(ioctl). All of them are reentrant calls.

Inside the driver and as part of the protocol implementa-
tion, we have implemented two types of data structures for
storing the messages in priority order: one is based on
binary heaps, and the other one is an array of FIFO circular
queues, one for each priority. Each of these data structures
has its own advantages and drawbacks. The array of FIFO
queues is faster when the number of priorities is not too
high, but it needs much more memory. Binary heaps take
less space but are slower in most practical cases. The par-
ticular choice of data structure is set in the driver configu-
ration information. Both data structures are implemented
such that equal-priority messages are dequeued in FIFO
order.

Both data structures are used to implement the concept
of the Communication Channel. There are two types of
channels for every CAN controller chip, one for transmit-
ting and one or more for receiving messages. Each channel
is implemented by one priority queue.

The open call creates a file description data structure for
the driver, and returns a file descriptor used for all the sub-
sequent operations on the driver. The close call destroys
that data structure.

The write call is used when a task wants to send a mes-
sage through the CAN bus. In the case when the transmis-
sion channel is full, this function blocks the calling thread
until it can write the message to the transmission channel.
Messages are stored in priority order. Figure 3 shows a dia-
gram with the elements involved in the write function call.

s ™

Transmission
Structure CAN
CHIP
| wrile nquens | _Put message |
| I—,: dequency™ 5, sent !

Bufler
requens

Update_Tx p

niessage
If the message is:
- Aboried
- Sent

.

Figure 3. Transmission of messages in CAN-RT-TOP

The standard POSIX read function does not have
parameters for specifying the communication channel from
which it wants to read messages. For this reason, a task
using the read call must configure the reception channel
from which it wants to read using set_read channel. Once
configured, the task will read messages from that channel;
besides, the configuration can be changed whenever it is
necessary. It would have been possible to use a different
file for each channel, but because the number of channels

could be very large, this solution would lead to excessively
large file tables. The read call gets the message with the
highest priority value from the reception channel associ-
ated with the calling thread. If no messages are available,
the calling thread is blocked until a message arrives. Figure
4 shows the elements involved in the read function call.

f Reception Structure \

CAN

Y anne .] CHIP

dequens ‘m» enqu!@%? Reccption
w . Buffer

| read

/]

|. Update_Rx r
. / I a message

Figure 4. Reception of messages in CAN-RT-TOP

jet the reading channel

Reading
channel

set_read_channel

The read bus status call may be used to find out
whether the associated driver has had any problem such as
an error or overrun in the CAN controller chip or an over-
run in the reception channel (more messages arrived than
those expected when the system was configured).

When transmitting a message through the CAN control-
ler chip, the problem known as inner priority inversion [13]
may occur. Our chip (Phillips SJA1000) has only one trans-
mission buffer, and the solution that we have implemented
to solve this problem is to replace the message stored in the
transmission buffer inside the controller chip with a higher
priority message whenever it is necessary. This can be done
using the chip’s message abort feature: we can abort the
message that is waiting at the transmission buffer, replace it
with the new highest priority message, and requeue the old
message into the transmission queue, as shown in Figure 3.

4. Application to a General-Purpose
Distributed Platform

The protocol presented in this paper is fully imple-
mented and available to be used by any application. In our
group, we are introducing it as a communication protocol
available in RT-GLADE [8] which is an implementation of
the Distributed System Annex of ADA 95 based on
GLADE [10], and optimized for achieving a better real-
time behavior. An application using this platform can be
modeled and analyzed [9][11].

To be able to use CAN-RT-TOP in RT-GLADE, or in
other applications, it is necessary to add a partitioning layer
that allows us to transmit messages larger than 8 bytes. To
accomplish this we have implemented in RT-GLADE a
general packet partitioning layer. This partitioning layer is
also available to be used by our ethernet protocol RT-EP.

We need to define the information that is required to be
transmitted with each packet to ensure the correct message
recomposition. Because of the small amount of bytes that
we have in CAN for each packet, this information should
be restricted in size as much as possible.

One of the CAN requirements is that identifiers of
simultaneously enqueued packets are different, to avoid
collisions. We meet this requirement by assigning at con-
figuration time different CAN identifiers to each task
involved in message transmission. As a consequence, it is
not necessary to explicitly identify which task is sending
the message.

Since the CAN bus does not reorder the transmitted
packets and the data structures that we have implemented
in the CAN driver dequeue packets of the same priority in
FIFO order, the only information that we need for the parti-
tioning layer is for identifying the packets that conform the
original message. In CAN, frames are not missed except in
unusual circumstances [12], but because we want to use
this layer with other networks also, we want to impose the
additional requirement of being able to detect errors caused
by missing packets in the message sequence. For this rea-
son, we will include the following information in each
packet:

* Type: Single, first, intermediate or last packet.

* Sequence number: a modular number of fixed size that
lets us distinguish packets from different messages.

* Number of remaining packets: a modular number of
fixed size that lets us distinguish whether the received
packets are contiguous or not.

This information can be coded in just one byte, as
shown in Figure 5. This byte would be the first user byte in
the case of the 11-bit identifier, and would be the least sig-
nificant bits of the 29-bit identifiers.

Bit number| 8 | 7 6 | 5
Field Type

4] 3[2] 1
Remaining packets

Seq. Num.

Figure 5. Partitioning information byte

5. Conclusions

We have presented a high level protocol over CAN
which is task oriented rather than device oriented, in order
to be able to use CAN for general purpose communica-
tions. In this protocol, tasks can freely choose the priorities
of their messages. Due to the characteristics of the CAN
bus, the protocol is useful for those systems in which mes-
sages are not too large.

The protocol is fully implemented under MaRTE OS,
and is being introduced in a general-purpose distributed
programming environment called RT-GLADE. To over-

come the limitation of only eight bytes per message, a
packet partitioning layer has been implemented.

The protocol is easily configurable and is designed to
ease portability among different CAN controller chips via a
simple interface.

REFERENCES

[1] CAN Specification Version 2.0. 1991, Robert Bosch GmbH,
Postfatch 30 02 40, D-70442 Stuttgart.

[2] CAN in Automation Web Page: www. can- ci a. org

[3] CanKingdom High level CAN protocol web page
www. canki ngdom or g

[4] OSEK-COM. “OSEK/VDX Communication. Version 3.0.1”,
January 29, 2003.

[5] Smart Distributed System. “Application Layer Protocol
Specification. Version 2.0” by Honeywell. April 6, 1999.

[6] M. Aldea and M. Gonzalez. “MaRTE OS: An Ada Kernel for
Real-Time Embedded Applications”. Proceedings of the
International Conference on Reliable Software Technologies,
Ada-Europe-2001, Leuven, Belgium, Lecture Notes in
Computer Science, LNCS 2043, May, 2001.

[7] J.M. Martinez, M. Gonzalez Harbour, and J.J. Gutiérrez. “RT-
EP: Real-Time Ethernet Protocol for Analyzable Distributed
Applications on a Minimum Real-Time POSIX Kernel”.
Proceedings of the 2nd Intl. Workshop on Real-Time LANSs in
the Internet Age, RTLIA 2003, Porto (Portugal), July 2003.

[8] Juan Lopez Campos, J.Javier Gutiérrez and Michael Gonzalez
Harbour. “The Chance for Ada to Support Distribution and
Real Time in Embedded Systems. Ada-Europe 2004, Palma
de Mallorca, Spain. June 2004.

[9] M. Gonzalez Harbour, J.J. Gutiérrez, J.C. Palencia and J.M.
Drake. “MAST: Modeling and Analysis Suite for Real-Time
Applications”. Proceedings of the Euromicro Conference on
Real-Time Systems, Delft, The Netherlands, June 2001

[10]L. Pautet and S. Tardieu. “GLADE: a Framework for
Building Large Object-Oriented Real-Time Distributed
Systems”. Proc. of the 3rd IEEE Intl. Symposium on Object-
Oriented Real-Time Distributed Computing, (ISORC'00),
Newport Beach, USA, March 2000.

[11]K.Tindell, A. Burns and A. Wellings. “Calculating Controller
Area Network (CAN) message response times”. Proc. of the
1994 IFAC Workshop on Distributed Computer Control
Systems (DCCS), Toledo, Spain.

[12]). Rufino, P. Verissimo, G. Arroz, C. Almeida, and L.
Rodrigues. “Fault-Tolerant Broadcasts in CAN”.In Digest of
Papers, The 28th International Symposium on Fault-Tolerant
Computing Systems, pages 150-159, Munich, Germany, June
1998. IEEE.

[13]Michiel Van Osch and Scott A. Smolka. “Finite-State
Analysis of the CAN Bus Protocol”. Proceedings of Sixth

IEEE International Symposium on High Assurance Systems
Engineering (HASE 2001), October 2001.

