
1

Abstract1

The ARINC-664, Part 7 (AFDX) standard defines a
communications network based on Ethernet and the UDP/
IP protocols. Contrary to general-purpose Ethernet, the
timing behavior in AFDX is deterministic due to the use of
special network switches and end-systems with static
routing tables and traffic regulation at the sending end
through mechanisms called virtual links. Even though the
latencies in this network are bounded, there are scheduling
and contention effects that need to be analyzed. In this
paper we develop a response-time analysis of the network
including the scheduling of the virtual links and contention
in the end-systems and in the switches. This response time
allows us to obtain worst-case latencies and output jitter for
the network messages. These results can be integrated with
the response time analysis in other resources to obtain end-
to-end response times in complex distributed systems.

1. Introduction
AFDX (Avionics Full Duplex Switched Ethernet) is a

communications network defined in the ARINC-644, Part
7 standard [1] and based on the use of point to point full
duplex ethernet links and special purpose switches in
which the routing of messages is preconfigured so that
there is no delay in the discovery of routing addresses
through network protocols that could interfere with the
transmission of application messages. In addition, AFDX
provides two redundant hardware communication links for
fault-tolerant operation.

AFDX [3][10] defines the communication process
among end-systems (processing nodes) where bandwidth
and bounded latency are guaranteed, although the
particular jitter for a flow of communication packets
between two end systems is not fixed, since it depends on
the global network traffic at a given time.

This paper describes methods for performing response-
time analysis (RTA) in AFDX deterministic switched
networks. The challenges are modelling the queuing effects
in the end-systems and in the AFDX switches, and
modelling the end-to-end response times of the
communications, including the case with multicasting.

We have defined a real-time model for a
communications network based on AFDX. From that
model, we have developed a response time analysis for
AFDX networks that can be integrated with the other
response-time scheduling analysis. In this way we have
developed end-to-end response time analysis techniques
for complex distributed systems.

The paper is organized as follows. In Section 2 we
describe the AFDX network from the point of view of its
scheduling properties and timing behavior. Section 3 states
the assumptions for the analysis, while Section 4 describes
the model of the AFDX network. Section 5 derives the
response time analysis, and Section 6 describes how to
combine this analysis with response times in other
resources to obtain an end-to-end RTA. Section 7 shows a
simple example to illustrate the application of the
techniques developed in previous sections. Finally, Section
8 presents a summary of the results, the conclusions, and
future work.

2. The AFDX Network
Normal communications for AFDX is made

interchanging messages through communication ports. The
communication ports are defined in the ARINC 653
standard [2], which defines the interface of a partition-
based operating system for use in avionics systems. There
are two different types of ports: sampling or queueing.
Queueing ports are required to manage at least 8Kbytes of
data.

For transmission there is no difference in the behavior of
both types. Messages that are generated are directly queued
in the transmission buffer. For message reception, the
behavior of these ports is different:
• Sampling Port: the arriving message overwrites the

current message stored in the buffer.

1. This work has been funded in part by the Spanish Ministry of
Science and Technology under grant number TIN2008-06766-C03-03
(RT-MODEL), and by the European Commission under project FP7/NoE/
214373 (ArtistDesign).

Response time analysis in AFDX networks

J. Javier Gutiérrez, J. Carlos Palencia, and Michael González Harbour

Computers and Real-Time Group, Universidad de Cantabria, 39005-Santander, SPAIN
{gutierjj, palencij, mgh}@unican.es

2

• Queueing Port: the arriving message is appended to a
FIFO queue.
Another mode of transfer in avionics services is the

Trivial File Transfer Protocol (TFTP) and communication
with compliant networks via SAP (Service Access Point)
ports. However, in this paper we have focused on the
normal communication mechanism through sampling or
queueing ports.

The ARINC 653 API has operations to send or receive
messages to or from these AFDX communication ports.
The messages are driven through the transmission protocol
stack based on the UDP/IP protocol, and they might be
fragmented into packets according to the traffic regulation
parameters. The packets are sent through two redundant
networks; the redundancy management of the packets sent
or received is made by specific Ethernet hardware.

The traffic regulation is made via Virtual Links defined
(see 1.2.1 “Virtual Link” in attachment 1 to [1]) as
conceptual communication objects to establish a logical
unidirectional connection from one source end system to
one or more destination end systems having a dedicated
maximum bandwidth. Each virtual link (VL) is
characterized by two parameters used for traffic regulation:
• The largest Ethernet frame (Lmax), which is a value in

bytes.
• The Bandwidth Allocation Gap (BAG), which is a power

of 2 value in the range [1,128]. The BAG represents the
minimum interval in milliseconds between Ethernet
frames transmitted on the VL.
Each virtual link has a FIFO queue for all the

fragmented packets to be transmitted on this VL with its
appropriate bandwidth. Several AFDX communication
ports may share the same VL to transmit their packets.
Furthermore, in a partitioned system using ARINC 653,
several partitions or tasks in the same or in different
partitions could share the same AFDX port. Sharing ports
or VLs causes a poor schedulability of the system, as there
is no way to prioritize messages and they will be enqueued
in FIFO order. The VL queue for packets is a source of
contention for the messages transmitted on an AFDX
network.

In order to avoid the fragmentation of messages for
sampling ports, it is recommended to adjust the Lmax of
the virtual link to accommodate the complete message. On
the other hand, queuing ports can support messages of
different sizes up to a maximum of 8 Kbytes, so
fragmentation may be needed. Fragmentation may also be
needed when very long packets could excessively delay the
transmission of other contending messages with very short
deadlines.

The Virtual Link Scheduler is in charge of selecting the
next packet to be transmitted according to the allocated
bandwidth for each VL. This scheduler selects the first
packet from a VL queue that is ready to be transmitted.
When several VLs are ready to transmit then they are
selected in turns until all of their messages have been
transmitted. This choice introduces jitter for the
transmission over any of the VLs, which is bounded by a
maximum value defined in the specification (subclause
1.2.4.3 “Jitter” in attachment 1 to [1]).

The maximum allowed jitter on each VL at the output of
the end system should comply with both of the following
formulas:

where, Nbw is the speed of the Ethernet link in bits per
second, 40 μs is the typical minimum fixed technological
jitter, and the maximum jitter is expressed in microseconds.
The value 20 is the number of bytes to be added to each
Ethernet frame (see Figure 1): 8 bytes for the preamble and
the start of frame delimiter (SFD) and 12 bytes for the
inter-frame gap (IFG).

We also have to take into account that the minimum
Ethernet frame has 64 more bytes, which can be used to
send AFDX payloads between 1 and 17 bytes. This means
that at least 84 bytes are always transmitted. The maximum
Ethernet frame has 1518 bytes for an AFDX payload up to
1471 bytes. So 1538 is the maximum number of bytes

MaxJitter 40μs

20 Lmaxi+() 8⋅()
i set of VLs{ }∈
∑

Nbw
---+≤

MaxJitter 500μs≤
(1)

Figure 1. Scheme of the Ethernet frame

8 bytes

Preamble/
Start

14 bytes

Addresses/
Type

IP
Structure

UDP
Structure Padding SN Frame

Check
AFDX

Payload InterFrame Gap

12 bytes46 to 1500 bytes 4 bytes

64 to 1500 bytes

20 bytes 8 bytes 1to 1471 bytes 0 to 16 1

3

transmitted per packet. The total amount of bytes sent
through the network can be obtained in terms of the AFDX
payload according to the scheme of the Ethernet frame
with UDP/IP illustrated in Figure 1.

A virtual link can be composed of a number of Sub-
Virtual Links, all of them having a dedicated FIFO queue
which is read on a round robin basis by the main VL FIFO
queue. The round robin algorithm works over IP
fragmented packets.

The ARINC 664 specification [1] describes that it is the
system integrator’s responsibility to determine that for the
chosen end system configuration and implementation the
500 μs limit in Eq. (1) is not exceeded. This specification
also defines the following two limiting cases to
mathematically treat the allowed latency in the end system
transmission (subclause 1.2.4.3 “Jitter” in attachment 1 to
[1]):
• For those messages that are shorter than Lmax (and

therefore do not require fragmentation) and that are
produced at a frequency that is equal to or lower than the
BAG of the VL, the total allowed latency is:

where, LT is the technological latency in the
transmission, defined as the time required for a packet to
go by the end system hardware when there is no
contention from other messages. The value of LT should
be bounded and lower than 150μs (see subclause 1.2.4.1
“Latency” in attachment 1 to [1]).

• For those messages requiring fragmentation or that are
produced in bursts, there could be p-1 packets already
waiting to be processed in the VL FIFO queue, and then
the latency for packet p on the VL can be calculated as
follows:

Once a packet is ready to be transmitted, it is sent to the
switch using the full capacity of the physical link. The
switch delivers the packet from the incoming port (where
the source end system is connected) to the outgoing port or
ports (where the destination end systems are connected) in
a store and forward way. A new contention point, and a
new source of jitter appears in the FIFO queue where
packets should wait to be sent to the destination end
system. The latency introduced when a packet is delivered
from the incoming to the outgoing port must also be taken
into account (known as the hardware latency of the switch).
Then, once the packet is ready to be transmitted from the

FIFO queue of the outgoing port, it is sent to the
destination end system using the full capacity of the
physical link.

At the destination end system the packet is driven
through the reception protocol stack. When a message is
completely received, it is enqueued at the corresponding
AFDX port, which could potentially overflow. Similar to
the LT value, the technological latency of the end system in
reception, LR,should be bounded and lower than 150μs (see
subclause 1.2.4.1 “Latency” in attachment 1 to [1]).

3. Assumptions for the analysis
According to the ARINC 664 specification [1] and in

order to establish a basic model, we have made the
following assumptions:

1.Applications exchange data on the network exclusively
using AFDX communication ports, with messages sent
from one source port in an end system to just one
destination port in another end system. We will later
eliminate this restriction and allow the use of multicast
messages.

2.The communication process starts in an end system
when a message is sent to an AFDX communication
port using the AFDX API, and finishes when the
message has reached the destination port and has been
received using the corresponding operation of the
AFDX API.

3.Only VLs (virtual links) are considered; sub virtual links
are not considered for the moment.

4.All the queues are FIFO, so no priorities have been
considered.

5. Initially we consider that messages only cross one
switch, but we will later extend the analysis to the use of
multiple switches.

6.The model of the latency of the hardware in the switch
to manage a packet from the incoming port to the
outgoing port should be provided by the manufacturer.
We will assume a simple model based on a bounded
latency, for the purpose of developing an initial analysis.

7.The latency of the end system hardware for transmission
or reception is also provided by the manufacturer or can
be calculated somehow. We will assume a simple model
based on a bounded latency.

8.The latency in the physical link due to the propagation
of a bit is insignificant compared to the rest of the
latencies, assuming short distance communications, and
therefore we will not take it into account. In the same

MaxLatency BAG MaxJitter LT+ +≤ (2)

MaxLatency p() p BAG⋅ MaxJitter LT+ +≤ (3)

4

way as it is calculated in [10], the latency for bits
transmitted through a fiber optic link of 100 meters
length is around 0.5 μs. The transmission times for the
minimum and the maximum frame sizes (84 and 1538
bytes) at 100 Mbps are 6.72 μs and 123.04 μs
respectively.

9.We will consider variable-size messages for each
message sequence, within a minimum and a maximum
size.

10.We assume that the queues in the switches and in the
end systems are large enough to accommodate the
worst-case traffic.

4. Modelling
This section is devoted to describing the model of the

communication process across an AFDX network,
including the traffic produced by the applications and the
identification of the different stages involved in the
communication process. The objective is to allow the
calculation of the worst-case and the best-case latencies or
transmission times for any message from the instant when
the message is sent to the AFDX port by an application
task (called the release time) until the message is received
by a destination task from the corresponding AFDX port
(called the arrival time). The resulting worst- and best-case
latencies can be used to calculate offset and jitter terms for
the overall analysis of the distributed system as described
in Section 6.

The task model used for the analysis of the AFDX
network is concentrated on the elements involved in the
communication. In this simplified model we assume that
applications are composed of tasks released by a stream of
periodic events. These tasks execute one instance, or job,
per event received, and therefore each task executes an
infinite stream of jobs, one for each period or event
activating it. Each of these tasks can send messages to the
AFDX ports at specific times and rates.

We will distinguish two types of messages:
• Synchronized. The release times of these messages are

relative to a general and common reference of time. This
time reference might be for example the start of the MAF
(major frame) for ARINC 653 systems. An offset is
defined to represent the interval between the start of the
MAF and the earliest release of the message.

• Non-synchronized. There is no restriction on the
temporal relation between message releases. These
messages can be released at any time.
A message stream σi in AFDX is characterized by the

following parameters:

• Worst-case number of bytes of a message (Mi): it is the
maximum number of bytes of the message payload. It
allows us to obtain the number of packets pi into which
the message is fragmented, for the worst-case analysis.

• Worst-case number of bytes of a packet payload (Npi): it
is the maximum number of bytes of the payload of a
single packet.

• Total worst-case number of bytes of a packet (Ni): it is
the maximum number of bytes of a single packet,
including the message payload (Npi) and the overhead
bytes.

• Best-case number of bytes of a message (): it is the
minimum number of bytes of the message payload. It
allows us to obtain the number of packets into which
the message is fragmented, for the best-case analysis.

• Best-case number of bytes of a packet payload (): it
is the minimum number of bytes of the payload of a
single packet.

• Total best-case number of bytes of a packet (): it is the
minimum number of bytes of a single packet, including
the message payload () and the overhead bytes.

• Period (Ti): it is the minimum time between the release
of two messages of the σi stream for non-synchronized
messages and the regular interval of time at which the
messages are released for synchronous messages.

• Offset (Φi): in synchronized messages, it is the time
relative to the start of the MAF or common time
reference that the release of the message will be delayed.
Currently we will not use this value, but in future work
we plan to develop analysis techniques that would use
this value to reduce the pessimism of the analysis for
systems with synchronized messages.

• Release jitter (Ji): it is the time expressing the variability
in the release of the messages with respect to the period.
It usually depends on the output jitter of the task sending
the message.

• Source (Source(σi)): it identifies the AFDX port and end
system from which the message is sent.

• Worst-case latency (Li) and best-case latency (Li
b): these

are the results of the analysis, and they represent
respectively the worst and the best latencies measured
since the message is released by enqueueing it at the
AFDX sending port until it arrives at the AFDX
destination port.
Virtual links are in charge of regulating the

transmissions from each end system. Virtual link VLj is
characterized by the following information:
• BAGj (Bandwidth Allocation Gap): it is the minimum

interval in milliseconds between Ethernet frames

Mi
b

pi
b

Npi
b

Ni
b

Npi
b

5

transmitted on VLj. Valid values are 2n with
.

• Lmaxj (Largest Ethernet frame): it is the number of bytes
that can be transmitted on VLj at any BAGj interval.

• SourcePorts(VLj): they are the AFDX port or ports which
are routed through VLj. There may be one or more ports
but only one end system for a given VL.

• DestinationPorts(VLj): they are the AFDX ports where
the messages are delivered. There may be one or more
ports corresponding to one or more end systems.
For systems where the messages should cross more than

one switch, the routing information for each switch has to
be preconfigured in order to determine the connection
between the input and the output ports. If messages only
cross one switch, the routing information can be extracted
directly from the VL information.

In any case, there are parameters linked to the hardware
which are needed to determine the latency of the complete
transmission of a message:
• Speed of the Ethernet link (Nbw): it is the number of bits

per second transmitted through the physical link.
• Technological latency in the AFDX hardware (LT): it is

the time taken by the Ethernet hardware to pick up a
message from the AFDX port, to enqueue it at the VL
queue (splitting it into packets if neccesary), and finally
to send the first bit of the Ethernet frame. To calculate
this value it is assumed that there are no other messages
or packets to transmit. This parameter is defined in the
ARINC-644, Part 7 standard (subclauses 1.2.4.1 and
1.2.4.3 in attachment 1 to [1]) and is limited to a
maximum of 150 μs, irrespective of whether one or more
messages are sent. We decompose it into the sum of two
other parameters:

- Minimum technological latency in the AFDX hardware
(LTmin): This is the minimum value of LT.

- The minimum fixed technological jitter (JTech): this
parameter is defined in the ARINC-644, Part 7 standard
(first equation and “note” in subclause 1.2.4.3 “Jitter”
in attachment 1 to [1]), with a typical value of 40μs. It
is the variable part of LT.

• Technological latency in reception (LR): it is the worst-
case time taken by the Ethernet hardware since the last
bit of an ethernet frame has arrived until the message is
enqueued at the AFDX port. The best-case value is called

.
• Switch hardware latency (LS): it is the worst-case time

taken by the switch to manage a packet from the
incoming port buffer to the outgoing port buffer. The
best-case value is called .

Another three parameters can be defined to model the
Ethernet frame and the protocol used:
• The Ethernet overhead (OEth): it is the number of

overhead bytes to be added to each Ethernet frame
(Preamble, Start Frame Delimiter, and Inter Frame Gap).
Its value is 20 bytes.

• Protocol overhead (OProt): it is the number of overhead
bytes corresponding to the protocol used for
communications. Its value is 47 bytes for the UDP/IP
used in AFDX.

• Minimum Ethernet frame (Nmin): it is the number of
bytes of the minimum Ethernet frame. Its value is 64
bytes.
In the model for the communication process across an

AFDX network we can consider the following stages:

1.Sending operation to reach the FIFO queue of the
AFDX port (CSend). This is the overhead of the message
send operation provided by the API. We need to
evaluate it as part of the execution time of the task
sending the message.

2.Message delivery through the network. This is the
process starting when the message is released from the
source AFDX port and finishing when the message is
queued at the destination AFDX port. It involves the
transmission through the end-system hardware, through
the network links and through one or more switches.

3.Receiving operation to get a message from the AFDX
receiving port (CReceive). In the same way as for the
sending operation, we have to evaluate the overhead for
this operation provided by the API in order to add this
extra execution time to the task receiving the message.
To model the latency of the second stage, message

delivery through the network, we divide it into the
following latencies:
• Step 1. Latency of scheduling the virtual links (LVL): it is

the time needed to deliver a message from the AFDX
port to the physical link. It takes into account the time
needed to deliver all the packets if the message has been
fragmented and the interference of other messages that
can be awaiting in the VL queue.

• Step 2. Latency of the transmission to the switch (LTr): it
is the time needed to send the last packet of a message to
the switch across the physical link. Notice that the time
needed to send the previous packets (sent in previous
BAGs) is already included in LVL.

• Step 3. Latency of the switch management (LSw): it is the
time needed to deliver the last packet of a message from
the incoming to the outgoing ports of the switch, plus the
interference that the packet can suffer due to other

0 n 7≤ ≤

LR
b

LS
b

6

messages sent to the same destination end system. Notice
that the time needed to deliver the previous packets
(corresponding to previous BAGs) is already included in
LVL, as the minimum BAG is 1ms, while the maximum
transmission jitter, according to the ARINC-644, Part 7
standard (first equation and “note” in subclause 1.2.4.3),
is 0.5 ms.

• Step 4. Latency of the transmission to the destination end
system (LTr): it is the time needed to send the last packet
of a message from the switch to the end system across
the physical link, and is the same as for the transmission
to the switch (Step 2).

• Step 5. Latency of the message management at the
destination end system (LRec): it is the time needed to
enqueue the message at the AFDX port.
Figure 2 shows the five steps with their latencies as

described above, as well as the send and receive stages. If a
packet has to cross more than one switch, steps 2 to 4 need
to be replicated for each of the switches that the packet
crosses.

5. Analysis of AFDX Systems
This section derives schedulability analysis techniques

that can be applied to the real-time model for a
communications network based on the ARINC 664 Part 7
(AFDX) standard. We first focus on the analysis with just
one switch, both for non-synchronized messages as well as
for synchronized messages. Then we extend the analysis to
the use of multiple switches.

In this section the analysis is based on a worst-case
situation for messages exchanged across the network and
following the assumptions made for the model. This worst-
case situation is pessimistic and could be enhanced with
the development of new schedulability analysis techniques
taking into account offsets, probably by adapting the
existing ones for fixed priorities or EDF [6][8][9].

The analysis in this section is only for non-synchronized
,messages. Synchronized messages can be analyzed
pessimistically by treating them as if they were non
synchronized. It seems feasible to apply the offset-based
response time analysis in a similar way for the calculation
of , the worst-case latency due to the messages
that can be awaiting on VLk. The relative phasings between

synchronized messages would be modelled through offsets.
This analysis could eliminate part of the pessimism in the
treatment of synchronized messages, and we leave it as
future work.

5.1. Analysis for non-synchronized messages
In this subsection we describe the analysis techniques to

calculate the latencies of steps 1 to 5 (see Figure 2) in the
communication process for messages produced by non-
synchronized tasks with jitter.

5.1.1. Transmission of the last packet to the switch
or to the end system, LTr (steps 2 and 4)

The number of packets of a message belonging to
stream σi being sent through VLk can be calculated as
follows, for the worst case:

where Oprot is the protocol overhead in bytes.
The worst-case latency of a packet transmitted through

the Ethernet link depends on the speed of the link, Nbw, and
the worst-case number of bytes of the packet Ni. The
following formula calculates this latency for a packet
belonging to the message stream σi:

where, Latency is measured in seconds, Nbw in bits per
second (bps), and Ni is the worst-case total amount of bytes
of the packet:

where, Npi is the amount of bytes corresponding to the
packet payload.

The size of the last packet of a message belonging to
stream σi being sent through VLk can be obtained for the

Figure 2. Latencies of the communication process

CReceiveCSend LVL LTr LSW LTr LRec

SENDING END SYSTEM RECEIVING END SYSTEM
SWITCH

AFDX API AFDX API
Physical Links

Ethernet
Hardware

Ethernet
Hardware

LVLQ ik()

pi
Mi

Lmaxk OProt–
-----------------------------------= (4)

Latency
Ni 8⋅
Nbw

------------= (5)

Ni OEth Nmin+= Npi 1 17[,]∈

Ni OEth OProt Npi+ += Npi 18 1471[,]∈
(6)

7

worst case by applying Eq. (6) to the worst payload for this
packet, Npi,last. This payload can be calculated as follows:

This equation calculates the number of packets by
subtracting an integer number of maximum-size payloads
from the message size. Using the worst-case payload of the
last packet we can calculate its total size using Eq. (6):

And then we can calculate the worst-case latency of a
last packet transmitted through the Ethernet link applying
Eq. (5) with this size:

The same calculation can be done for the largest-size
packet of VLk:

5.1.2. Scheduling of virtual links, LVL (step 1)

For the analysis of a message sent across a virtual link,
we assume that the technological latency on transmission
specified in the ARINC 664-Part 7 standard is counted just
once for all the messages to be transmitted in an
uninterrupted sequence. This can be justified because the
activity of the end system causing the transmission latency
is concurrent with the actual transmission.

So, in this case the latency of a message from stream σi
being sent through VLk due to the scheduling of the virtual
links in a specific processor can be calculated as follows:

where, IVL(ik) is the worst-case interference from the
messages of the other VLs in the same processor
generating message stream σi , and LVLQ(ik) is the worst-
case latency in the VLk queue, including the effects of the
messages that can be awaiting on VLk.

To obtain the LVLQ(ik) latency we will create a worst-
case scenario in which, when the message under analysis is
released, the VL buffer already contains the worst-case
amount of packets that can interfere the transmission.
Therefore we need to calculate the interference of the rest

of the messages sharing the VL and also the interference of
the previous packets of the message under analysis. For
this purpose we take into account the following
observations:
• We analyze the messages in a worst-case busy period. A

busy period is defined as an interval of time during
which the VL queue is not empty. Since the VL is
designed to be able to handle its worst-case throughput,
the utilization is smaller than 100% and this ensures that
there will be time instants at which the VL queue is
empty and, therefore, busy periods are bounded. The
worst case busy period is created by releasing all the
messages from all the message streams of the virtual link
at the same time, after having experienced their
maximum jitter, and with all subsequent messages with
the smallest jitter that makes them arrive within the busy
period. This ensures the maximum amount of work
concentrated towards the start of the busy period and
leads to the worst case.

• Each packet in the queue that is ahead of the message
under analysis contributes with an interference equal to
the BAGk.

• In addition, each packet of the message under analysis
before the last one also contributes with an interference
equal to the BAGk.

• A message in the FIFO queue can not be preempted, so
when calculating the interference of the rest of the
messages in the VL, we only need to consider those that
arrived at the queue before the message under analysis
(thus excluding the message instance under analysis). If
there are q message instances in the queue, we will take
into account the interference of the (q-1) previous
instances.

• Furthermore, the analysis technique should be applied
for all the message instances that can be in the queue in
the worst case busy period, similarly to the analysis of
non-preemptive messages that can be found in [4].
Since the virtual link uses a FIFO queueing discipline,

we can analyze the latencies using response time analysis.
We model the latency of each message as execution time
and we calculate the interference for the first packet of the
q-th instance of a message from stream σi to reach the VL
scheduler, as follows:

where, pi is the worst-case number of packets, MS(VLk) is
the set of message streams that share VLk with message

Npi last, Mi pi 1–() Lmaxk OProt–()⋅–= (7)

Ni last, OEth Nmin+= Npi last, 1 17[,]∈

Ni last, OEth OProt Npi last,+ += Npi last, 18 1471[,]∈

(8)

LTr i()
Ni last, 8⋅

Nbw
----------------------= (9)

LTrmax k()
OEth Lmaxk+() 8⋅

Nbw
--= (10)

LVL ik() LVLQ ik() IVL ik()+= (11)

wi q() q 1–() pi BAGk⋅()⋅

Jj q 1–() Ti⋅+
Tj

------------------------------------ 1+⎝ ⎠
⎛ ⎞

j MS VLk()∈
∑ pj BAGk⋅()⋅

+=

(12)

8

stream σi (excluding itself), Tj and Jj are the period and
release jitter of message stream σj. The first term in the
equation corresponds to the interference of previous
instances of the message stream under analysis, and the
second term is the interference by all those messages from
other streams that have arrived at the VL queue before the
message under analysis. The result of this equation, wi(q),
is the worst-case latency for the q-th instance of message
stream σi to reach the VL scheduler after a critical instant.

Eq. (12) is applied for all values of q equal to 1,2,3,…,
finishing at q=Qi, where Qi is the number of instances of
message stream σi that become ready for transmission
before the end of the busy period. The number of instances
is calculated as indicated in [4]:

where BPk is the length of the busy period for any message
of VLk (note that since the queue is FIFO it does not
depend on the particular message stream), and it is given
by the following recurrence relation, starting with an initial
value of , and finishing when

:

where, MU(VLk) is the set of message streams using VLk
(including message stream σi).

Using the results obtained for the different values of q in
(12), the worst-case latency for the last packet of the q-th
instance of message stream σi due to the messages that can
be waiting on the VL queue can be calculated in the
following way:

where,

In Eq. (16), we include a delay corresponding to the
maximum number of packets minus one, which is the time
that the last packet of the q-th message instance must wait
for transmission.

The interference of the rest of VLs, IVL(ik), can be
calculated based on the formula indicated in [1] as follows:

with

where, Sk is the set of VLs in the same processor than VLk
(excluding it). The requirements for IVL(ik) specified in the
ARINC 664 Part 7 specification (see subclause 1.2.4.3
“Jitter” in attachment 1 to [1]) and expressed in Eq. (18)
should be taken into account when we are parameterizing
the application, in particular in the assignment of the
number of VLs and their Lmax parameters.

Figure 3 shows an example for illustrating the
calculation of latencies in the VL scheduler of an end
system used in transmission. We assume that there are two
virtual links, VL1, and VL2. Two periodic message streams,
M1 and M2 share VL1, while a third message stream, M3,
uses VL2. The following tables show the configuration of
the VLs and the message sizes, the number of packets and
packet transmission times, assuming a 100Mb/s wire and
the packet overhead of 67 bytes

Qi
Ji BPk+

Ti
--------------------= (13)

BPk
0 BAGk=

BPk
n 1+ BPk

n=

BPk
n 1+ Jj BPk

n+
Tj

j MU VLk()∈
∑ pj BAGk⋅()⋅= (14)

LVLQ ik() ma x
q 1 2 … Qi, , ,=

= LVLQ ik() q()[] (15)

LVLQ ik() q() wi q() pi 1–() BAGk⋅ q 1–() Ti⋅–+=

(16)

TABLE 1.Configuration of VLs

VL BAG (μs) Lmax (bytes)

VL1 16000 200

VL2 16000 1000

IVL ik() LT

OEth Lmaxj+() 8⋅()
j Sk∈
∑

Nbw
--+= (17)

IVL ik()
OEth Lmaxk+() 8⋅

Nbw
-- LTmin–+ 500μs≤

LT LTmin JTech+=() 150μs≤

(18)

Figure 3. Example with 2 VLs and 3 message streams

VL1
VL2

T2 T1T3

M1M2
M3

9

Figure 4 shows a time diagram of a worst-case scenario
that starts with the VL1 queue having received an instance
of M2 and then an instance of M1, fragmented into two
packets, M1-1, and M1-2. We assume LT=80 μs. The figure
also shows the state of the VL queues at the start of each
BAG period. M1-2 has to wait for two BAGs required to
send M2 and M1-2 (total time= 2x16ms=32ms
corresponding to the LVLQ(ik) term). In addition, before it is
sent it suffers the technological latency in the end system1

(LT=80μs) and the impact from messages of other VLs, in
this case M3 (81.6μs). Both terms contribute to IVL(ik).
Therefore the total latency for the full M1 message is in the
worst case 32000+80+81.6+17.6 = 32179.2 μs.

From the analysis, we can derive the following
observations that may be useful to the designer:
• For the proposed analysis the following two situations

are equivalent: different tasks using different ports all of
them attached to one VL, or different tasks using one
port that is attached to one VL. The reason is that we are
not able to distinguish the originating port when the
message comes into the VL queue fragmented in packets.
We assume that packets of the same message are

enqueued in consecutive positions of the queue, i.e.,
packets from other messages can not be enqueued in the
middle.

• The exclusive use of a VL by an application task can lead
to a high number of VLs, which may make it difficult to
meet the latency requirements.

• Sharing a VL by several applications tasks makes it
easier to meet the latency requirements, but a message
can suffer a high interference due to the rest of messages
sharing the VL (IVLQ).

5.1.3. Switch management, LSw (step 3)

The latency due to the switch management is composed
of two terms:
• the latency to deliver a packet from the incoming to the

outgoing port, which can be considered as the hardware
latency provided by the manufacturer,

• and the interference due to the rest of the packets sent to
the same destination end system.
We can calculate the total latency in the switch for the

last packet of message stream σi being sent through VLk as
(assuming that the utilization of the output link is under
100%):

where, LS is the switch hardware latency and LSQ(ik) is the
interference of the rest of the packets in the output queue
associated with the outgoing port of σi in the switch.

To obtain the LSQ(ik) latency we can apply a similar
approach as we used for calculating LVLQ(ik). We will
create a worst-case scenario in which, when the packet

TABLE 2.Message requirements (times in μs)

Message VL Ji Li Ti
Num
pckts LTr(i)

M1 VL1 0 306 50000 2 17.6

M2 VL1 0 153 100000 1 17.6

M3 VL2 0 953 200000 1 81.6

1. Recall that we assume that this LT latency is only charged once per
BAG, as this is the implicit assumption in the equations that appear in
subclause 1.2.4.2 of Attachment 1 to [1].

Figure 4. Time Diagram showing the latencies in the VL scheduler, in μs (for visibility, they are not scaled)

VL1 VL2

M2

M1-1

M1-2

t=0 t=16000 t=32000 t=48000

M1

M2

M3

VL1 VL2

M1-1

M1-2

VL1 VL2

M1-2

VL1 VL2

M3

LT M2

80 17.6

80 17.6

80 81.6

LT M1-1

LT M3

17.6
M1-2

LSw ik() LS LSQ ik()+=
(19)

10

under analysis is enqueued into the output queue, it already
contains the worst-case amount of packets that can
interfere the transmission. Therefore we need to calculate
the interference of the rest of the packets sent through this
outgoing port and also the interference of the previous
packets coming from the same VL of the message stream
σi under analysis. For this purpose we take into account the
following observations:
• We analyze the packets in a worst-case busy period. In

this case, a busy period is defined as an interval of time
during which the output queue is not empty. The worst-
case busy period is obtained after a critical instant
created with the same criteria as in the analysis of
LVLQ(ik).

• Each packet in the output queue that is ahead of the
packet under analysis contributes with an interference
equal to its worst-case transmission time on the physical
link, that can be calculated using Eq. (10) with the
maximum packet length for the corresponding virtual
link.

• In addition, each packet of the message under analysis
before the last one also contributes with an interference
equal to the transmission time for a worst-case size
packet, calculated using Eq. (10) for VLk.

• A packet in the FIFO queue can not be preempted, so
when calculating the interference of the rest of the
packets in the output queue, we only need to consider
those that arrived at the queue before the packet under
analysis (thus excluding itself).

• Furthermore, the analysis technique should be applied
for all the packets that can be in the queue in the worst
case busy period, similarly to the analysis of non-
preemptive messages that can be found in [4].
We model the latency of each packet as execution time

and we calculate the interference for the q-th packet
coming from VLk to reach the physical output link, as
follows:

where DP(VLk) is the set of VLs that have as destination
port the outgoing port of VLk , excluding itself; and Jpj is
the worst-case release jitter of the packets coming from
VLj, and is calculated by adding the output jitter of the

packets at the source end systems, and the jitter to deliver a
packet from the incoming to the outgoing port, as follows:

where, Sj is the set of VLs in the same processor than VLj
(excluding it).

The first term in Eq. (20) corresponds to the interference
of previous packets of VLk, and the second term is the
interference by all those packets from other VLs. The result
of this equation, wk(q), is the worst-case latency for the q-
th packet of VLk to reach the output physical link after a
critical instant.

Eq. (20) is applied for all values of q equal to 1,2,3,…,
finishing at q=Qk, where Qk is the number of packets of
VLk that become ready for transmission before the end of
the busy period. The number of packets is calculated as
indicated in [4]:

where BPk is the length of the busy period in the output
port of VLk, and it is given by the following recurrence
relation, starting with an initial value of ,
and finishing when :.

Using the results obtained for the different values of q in
(20), the worst-case latency for the last packet of the q-th
instance of message stream σi due to the packets that can
be waiting on its associated output queue can be calculated
in the following way:

where,

5.1.4. Message management at destination end
system, LRec (step 5)

We can assume that this latency is equal to the
technological latency in the reception .

wk q() q 1–() LTrmax k()⋅

Jpj q 1–() BAGk⋅+
BAGj

--- 1+⎝ ⎠
⎛ ⎞

j DP VLk()∈
∑ LTrmax j()⋅

+=

(20)

Jpj JTech
LTrmax m()

m Sj∈
∑ LS LS

b–()+ +=
(21)

Qk
Jpk BPk+

BAGk
------------------------= (22)

BPk
0 LTrmax k()=

BPk
n 1+ BPk

n=

BPk
n 1+ Jpj BPk

n+
BAGj

j DP VLk() k∪∈
∑ LTrmax j()⋅= (23)

LSQ ik() ma x
q 1 2 … Qk, , ,=

= LSQ ik() q()[] (24)

LSQ ik() q() wk q() q 1–() BAGk⋅–= (25)

LRec LR=

11

5.1.5. Best-case latencies
In order to calculate the output jitter of the messages

sent through the network it is necessary to calculate best-
case latencies in addition to the worst case values.

Steps 2 and 4: Transmission of the last packet to the switch
or to the end system

The best-case number of packets of a message
belonging to stream σi being sent through VLk can be
calculated as:

where Oprot is the protocol overhead in bytes.
The size of the last packet of a message belonging to

stream σi being sent through VLk can be obtained for the
best case by applying Eq. (6) to the best payloads for this
packet, Np

b
i,last. This payload can be calculated as follows:

This equation calculates the number of packets by
subtracting an integer number of maximum-size payloads
from the message payload. It could be argued that for
calculating the best case a minimum payload of size one
can be generated if all the previous packets fill in their
maximum payload. However, this would not lead to a best-
case latency, since we would be producing one more packet
than is necessary, and the latency of a full packet, equal to
the BAG, is much larger than the transmission latency.

Using the best-case payload of the last packet we can
calculate its total size using Eq. (6):

And then we can calculate the best-case latency of a last
packet transmitted through the Ethernet link applying Eq.
(5) with this size:

Step 1: Scheduling of virtual links
The latency of a message from stream σi sent through

VLk due to the scheduling in the virtual link can be
calculated as the sum of , which is the best-case
latency due to the messages that can be awaiting on VLk;
and , and is the best-case interference from the

messages of the other VLs in the same processor
generating message stream σi:

A lower bound on the latency can be calculated
assuming that there are no messages to be sent in the VL
except for the message under analysis, which has its
minimum payload. In the best case this is a number of
BAGs equal to the minimum number of packets minus one.
For the latency, we use the minimum technological
latency defined in the ARINC-644, Part 7 standard.

Step 3: Switch management
A lower bound on the best case management latency can

be obtained by assuming that there is no contention from
other messages inside the switch, and therefore we just take
into account the minimum hardware latency of the switch
latency that we call .

Step 5: Message management at destination end system
We can assume that this latency is equal to the best

technological latency in the reception, which is
.

5.1.6. Total latency
The worst-case latency, Lik, for a message stream σi sent

through virtual link VLk can be calculated as the sum of
latencies of steps 1 through 5 plus its own input jitter:

Similarly, we calculate the best-case latency, in the
following way:

The output jitter is the difference between the worst-
case and the best-case latencies.

5.2. Analysis for two or more switches and for
multicast messages

When a message has to cross two or more switches to
reach the destination end system, the latency due to the
management of each switch and one extra transmission for
each switch should be added. Figure 5 shows the
communication process with multiple switches. In this
case, the worst-case latency for the message stream σi

pi
b Mi

b

Lmaxk OProt–
-----------------------------------= (26)

Npi last,
b Mi

b pi
b 1–() Lmaxk OProt–()⋅–= (27)

Ni last,
b OEth Nmin+= Npi last,

b 1 17[,]∈

Ni last,
b OEth OProt Npi last,

b+ += Npi last,
b 18 1471[,]∈

(28)

LTr i()
b Ni last,

b 8⋅
Nbw

----------------------= (29)

LVLQ ik()
b

IVL ik()
b

LVL ik()
b LVLQ ik()

b IVL ik()
b+ pi

b 1–() BAGk⋅ LTmin+= =
(30)

LVLQ ik()
b

IVL ik()
b

LS
b

LRec
b LR

b=

Lik LVL ik() 2 LTr i()⋅ LSw ik() LRec Ji+ + + += (31)

Lik
b pi

b 1–() BAGk⋅ LTmin+[] 2 LTr i()
b⋅ LS

b LRec
b+ + +=
(32)

12

being sent through VLk and crossing m switches can be
calculated as follows:

where link(i) is the set of m+1 physical links traversed by
message stream σi and switch(i) is the set of m switches
traversed by σi. We assume that different link speeds and
switches may be used.

A similar approach can be followed to obtain the best-
case latency for the message stream σi being sent through
VLk :

The analysis presented in this section has focused, for
simplicity of presentation, on messages with just one single
destination. However, the analysis works without
modification for multicast messages. For these messages,
the latency of each destination has to be calculated. The
latencies for Steps 1 and 2 in the communication process
are calculated in the same way as for unicast messages.
Step 3 has to be repeated for every output port queue in the
switch. Step 4 has to be repeated using the characteristics
of the corresponding output link, and Step 5 is also
repeated in each of the destination end systems. If one or
more of the paths of the message traverse several switches,
then the analysis for multiple switches is done for each of
these paths.

6. Combined analysis of the distributed
system

Offset based response-time analysis techniques exist
[6][9] and they can be combined with the developed
response time analysis for AFDX networks. To analyze a
distributed application it is necessary to integrate both
analyses.

One of the interesting properties of offset-based
response time analysis is that it provides a natural way of
composing analysis in different resources using different

scheduling policies. The analysis in each resource is made
independently, and therefore we can use whatever
technique is appropriate. As a result of the analysis in one
resource we get response times and jitter terms than can be
used to calculate equivalent offsets and jitters for the
analysis in the other resources. In this way we can combine
techniques for fixed priorities, dynamic priorities, (EDF),
time partitioned scheduling, and AFDX communication.

To make this integration effective we just need to
explain how to calculate response times and jitters from the
latencies obtained in the AFDX network, and how to
calculate the release jitters for the messages in the network.
Suppose the message stream σi shown in Figure 6, sent at
the at the finalization of task τaj-1 and activating, in turn,
τaj+1 in its end-to-end flow Γa. Task τaj is just the model
of the σi message in the end-to-end flow.

The worst-case release jitter of the message stream, Ji, is
obtained as the difference between the worst and the best
case response time of τaj-1 :

The worst and best-case latencies of the AFDX message
shown in equations (33) and (34) already take into account
this jitter, and are relative to the best possible release time ,
which is in this case . Therefore, the worst and best-
case response times of σi (or τaj) are obtained as:

where k is the index of the VL through which message
stream σi is sent. From these values we would calculate
inherited offsets and jitters that could be used in the
Holistic or Offset-Based response time analysis algorithms.

To complete the integration of the analysis in distributed
systems we must take into account the clock
synchronization mechanisms, and their precision, if
present. In a distributed end-to-end flow that is activated
from a synchronized workload event, the tasks that are
assigned to synchronized processors are all synchronized
tasks. All the other tasks that execute in non-synchronized
processors are considered non synchronized.

Lik LVL ik() LTr i()

link i()∀
∑ LSw ik()

switch i()∀
∑ LRec Ji+ + + +=

(33)

Lik
b pi

b 1–() BAGk⋅ LTmin+[]

LTr i()
b

link i()∀
∑ LS

b

switch i()∀
∑ LRec

b

+

+ +

=
(34)

Figure 5. Communication process with m switches

SW1

PL1 PL2

SW2

PL3

SWm

PLm+1
SENDING

END SYSTEM
RECEIVING

END SYSTEM

Figure 6. Portion of an end-to-end flow with a message
stream sent through an AFDX network

τaj-1 τaj+1
τaj

σi...

Ji Rij 1– Rij 1–
b–= (35)

Rij 1–
b

Φi j max, Rij Rij 1–
b Lik+= =

Φij min, Rij
b Rij 1–

b Lik
b+= =

(36)

13

We have to include the precision of the clock
synchronization mechanism in the analysis of synchronized
tasks. In a given end-to-end flow, every time we cross from
one processor to another we need to add an additional jitter
term equal to the precision of the clock synchronization.
This is added to the initial Jij release jitter term of the
destination task in the flow.

For example, if the end-to-end flow in Figure 6 is
synchronized and the processor clocks are also
synchronized, we need to use an initial jitter for τaj+1 of
Jaj+1+precision(clock). This approach will take into
consideration the errors in the synchronization of the
clocks.

7. Case study
This section shows a simple case study that is used to

illustrate the analysis in an AFDX switch. It contains two
situations: the first situation has 4 message streams, two of
them sharing the same virtual link; the second one has also
4 message streams, and are sent through different virtual
links.

This case-study contains an application with 8 tasks
allocated in 7 partitions and 3 processors. Four of these
tasks produce non-synchronized messages. Table 3 shows
the relevant characteristic of this set of tasks (times in
milliseconds). Initial input jitter for the end-to-end flows is
assumed to be zero. All tasks and non-synchronized.

We are assuming that the value of LT is 80 μs,
LTmin=JTech= 40 μs., , ,

=40 μs.

7.1. Situation 1
In this situation tasks T1, T2, T3 and T4 send messages

at the end of their executions with the parameters shown in
Table 4 (times in milliseconds and lengths of messages in
bytes). Messages from T1 and T2 share Virtual Link VL1.
Task T3 and T4 transmit through Virtual Links VL2 and
VL3 respectively. The destination end system for VL1 and

VL3 is processor CPU3. The destination end system for
VL2 is processor CPU2. The release jitter of each message
is produced by the variability of the execution of the task
that generates it. The lengths of the messages are fixed (the
best and the worst sizes are equal), and we have chosen to
have packets of size equal to the Lmax value of their
respective VLs.

Virtual Links have been configured to support the
bandwidth necessary to send the messages under their
control. Table 5 shows the BAG and Lmax parameters for
each VL, as well as the connections in the switch (only
processors are indicated for simplicity). Figure 7 shows the
diagram of the system for Situation 1 with its tasks,
messages, VLs and switch connections.

The difference between the worst and the best cases for
the latencies of M1 results in the contribution to the output
jitter generated to the task T5 receiving this message (this
jitter is 16.2132 milliseconds).

TABLE 3.Task set for the case-study

Task Proc. Part. Ci Ti

T1 CPU1 P1 10 50

T2 CPU1 P1 10 100

T3 CPU1 P2 2 20

T4 CPU2 P3 10 40

T5 CPU3 P4 - -

T6 CPU3 P5 - -

T7 CPU2 P6 - -

T8 CPU3 P7 - -

LS 100μs= LS
b 70μs=

LRec
b

TABLE 4.Message set for Situation 1

Msg VL
Task

(Send)
Task

(Rec.) Ji Li Ti

M1 VL1 T1 T5 20 306 50

M2 VL1 T2 T6 60 153 100

M3 VL2 T3 T7 5 953 20

M4 VL3 T4 T8 15 453 60

TABLE 5.Configuration of VLs for Situation 1

VL BAG Lmax SW-in SW-out

VL1 16 200 CPU1 CPU3

VL2 16 1000 CPU1 CPU2

VL3 32 500 CPU2 CPU3

Figure 7. Diagram for Situation 1

VL1VL2

T2

VL3

T1T3

T5

T6

T8T4

T7

CPU1

CPU2 CPU3

SWITCH

M1M2M3

M4 VL3

VL2 VL1
VL1

14

We have developed a tool to calculate automatically the
latency in the AFDX network. The results obtained for the
analysis of this example are shown in Table 6 (times in
milliseconds).

7.2. Situation 2
In this situation (see Figure 8 and Table 7) messages

from stream M2 are sent through the new Virtual Link
VL4, which is different from the one used by M1.

The configuration of the Virtual Links is shown in Table
8. The configuration of the Virtual Link VL1 has changed
to accommodate only the traffic for M1, while the traffic of
M2 goes to VL4.

In this case the contribution of message M1 to the output
jitter, i.e., the difference between the worts and best case
latencies, is 0.2484 milliseconds, which is shorter than for
Situation 1, and with a shorter worst-case latency. This is
mainly because M1 is sent in one packet.

The results obtained when applying the analysis with the
developed tool for this example are shown in Table 9
(times in milliseconds)..

We can see how M2 has now a shorter worst-case
latency than for Situation 1 due to the fact that for Situation
2, M1 and M2 do not share a virtual link.

8. Conclusions and future work
In this paper we have developed a new analysis response

time analysis technique for AFDX networks. This analysis
technique can be combined with other response time
analysis techniques to analyze distributed systems.

Prototype tools have been developed to assist us in
checking the analysis techniques. They have been used to
analyze the presented case study. As future work, the new
technique will be added as an extension to the open-source
MAST model and toolset for real-time applications [7].

As future work we plan to adapt the analysis to the
current version of the standard. The 2003 version of the
standard was used in this work and the 2005 or further
version should be used. In particular, it is important to
study the effects of the token bucket algorithm that appears
in the 2005 version of the ARINC 664-Part 7 standard.
This algorithm is used in the AFDX Switch to reject “non-
conformant” incoming traffic, and also for “Traffic
Shaping” the outgoing messages in the End-System. Also
important is to take into consideration the presence of two
priority levels inside an AFDX Switch.

In addition, we plan to do an evaluation and validation
of the new analysis by comparison with actual latencies in
real or simulated AFDX hardware.

Other planned extensions are the support for subVLs,
and the extension of offset-based analysis techniques to

TABLE 6.Results of the analysis for Situation 1

Mess
age VL Li Lib Input Ji

Output
Ji

M1 VL1 32.3984 16.1852 20 36.2132

M2 VL1 32.3984 0.1852 60 92.2132

M3 VL2 0.4208 0.3132 5 5.1076

M4 VL3 0.3480 0.2332 15 15.1076

TABLE 7.Message set for Situation 2

Messa
ge VL

Task
(Send)

Task
(Rec.) Ji Li Ti

M1 VL1 T1 T5 20 306 50

M2 VL4 T2 T6 60 153 100

M3 VL2 T3 T7 5 953 20

M4 VL3 T4 T8 15 453 60

Figure 8. Diagram for Situation 2

VL2

VL3

T3

T5

T6

T8T4

T7

CPU1

CPU2 CPU3

SWITCH

VL4

T2

VL1

T1
M1M2M3

M4 VL3

VL1VL2
VL4

TABLE 8.Configuration of VLs for Situation 2

VL BAG Lmax SW-in SW-out

VL1 32 353 CPU1 CPU3

VL2 16 1000 CPU1 CPU2

VL3 32 500 CPU2 CPU3

VL4 64 200 CPU2 CPU3

TABLE 9.Results of the analysis for Situation 2

Msg VL Li Lib
Input

Ji Output Ji

M1 VL1 0.45808 0.20968 20 20.2484

M2 VL4 0.45808 0.1852 60 60.27288

M3 VL2 0.45064 0.3132 5 5.13744

M4 VL3 0.37064 0.2332 15 15.13744

15

analyze synchronized message streams in the AFDX
network.

References
[1] Airlines Electronic Engineering Committee, Aeronautical

Radio INC., “ARINC Specification 664: Aircraft Data
Network, Part 7 - Deterministic Networks”, October 2003.

[2] ARINC. “Avionics Application Software Standard
Interface”. ARINC Specification 653-1. March 2006.

[3] Condor Engineering, “AFDX/ARINC 664 tutorial,” May
2005.
http://www.acalmicrosystems.co.uk/whitepapers/sbs8.pdf

[4] R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien, “Controller
Area Network (CAN) schedulability analysis: Refuted,
revisited and revised,” Journal of Real-Time Systems, 35
(3), Springer, pp. 239-272, 2007.

[5] M. González Harbour, J.J. Gutiérrez García, J.C. Palencia
Gutiérrez, and J.M. Drake Moyano. “MAST: Modeling and
Analysis Suite for Real Time Applications”. Proceedings of
13th Euromicro Conference on Real-Time Systems, Delft,
The Netherlands, IEEE Computer Society Press, pp. 125-
134, June 2001.

[6] Jukka Maki-Turja and Mikael Nolin. “Efficient
implementation of tight response-times for tasks with
offsets”. Real-Time Systems Journal, 40(1):77–116,
February 2008.

[7] MAST: Modelling and Analysis Suite for Real-Time
Systems. Home page:
http://mast.unican.es

[8] J.C. Palencia, and M. González Harbour, “Exploiting
Precedence Relations in the Schedulability Analysis of
Distributed Real-Time Systems”. Proceedings of the 20th
IEEE Real-Time Systems Symposium, 1999.

[9] J.C. Palencia and M. González Harbour, “Offset-Based
Response Time Analysis of Distributed Systems Scheduled
under EDF”. Euromicro conference on real-time systems,
Porto, Portugal, June 2003.

[10] Ruggedcom Industrial Strength Networks, “Latency on a
Switched Ethernet Network,” April 2008.
http://www.ruggedcom.com/pdfs/application_notes/
latency_on_a_switched_ethernet_network.pdf

[11] M. Spuri. “Holistic Analysis of Deadline Scheduled Real-
Time Distributed Systems”. RR-2873, INRIA, France, 1996.

[12] K. Tindell, and J. Clark, “Holistic Schedulability Analysis
for Distributed Hard Real-Time Systems”. Microprocessing
& Microprogramming, Vol. 50, Nos.2-3, pp. 117-134, April
1994.

