
Real-time modelling of DDS for event-driven applications
Héctor Pérez and J. Javier Gutiérrez

Computers and Real-Time Group
Universidad de Cantabria

Santander, SPAIN
{perezh, gutierjj}@unican.es
Abstract—The Data Distribution Service (DDS) standard
defines a data-centric distribution middleware that supports
the development of distributed real-time systems. To this end,
the standard includes a wide set of configurable parameters to
provide different degrees of Quality of Service (QoS). This
paper presents an analysis of these QoS parameters when DDS
is used to build reactive applications normally designed under
an event-driven paradigm, and shows how to configure DDS to
obtain predictable applications suitable to apply traditional
schedulability analysis techniques.

I. INTRODUCTION1

The OMG DDS specification [1] is based on the
decoupled interaction paradigm provided by the publisher-
subscriber communication model. DDS also supports a wide
range of QoS parameters that enable communication control,
which makes this standard suitable for developing
distributed real-time and embedded systems (e.g. cyber-
physical systems [2]). Furthermore, the OMG is addressing
the use of distribution middleware in future high-integrity
systems by extending DDS for this kind of critical systems,
in which real-time issues should be also considered.
Although DDS was initially designed to develop data-centric
systems, it is also possible to apply this standard to event-
driven systems with precedence constraints in which the
real-time behaviour should be ensured by addressing the
schedulability analysis of the system as a whole.

The event-driven end-to-end flow model defined by the
MARTE standard [3] enables the modelling and analysis of
distributed real-time systems via the traditional scheduling
theory for both linear [4][5] and nonlinear systems [6][7].
This model plays a central role in the development of real-
time distributed systems, as it is part of a relevant modelling
standard and also includes Computer-Aided Software
Engineering (CASE) tools such as MAST (Modelling and
Analysis Suite for Real-Time Applications) [8] to facilitate
the development process for real-time engineers.

MAST is a software toolsuite that offers an open set of
tools for modelling, analysis and design of real-time
systems. It proposes a system model also based on the
aforementioned real-time end-to-end flow model, and it is
currently being aligned with MARTE’s standardized
terminology [9].

The complexity associated to the use and management of
the QoS parameters defined by DDS has motivated the
application of design patterns to prevent inconsistent
combinations of QoS policies that may also lead to
unpredictability [10]. Furthermore, and although the
distribution model proposed by DDS primarily aims to
develop data-centric applications where the source of the
data samples may not be known, it is possible to apply this
model to other kinds of real-time applications in which the
processing of each data sample may have a specific deadline
associated. This scenario was addressed in a previous study
[11] which concluded that an application using the DDS
distribution model can be represented as a set of end-to-end
flows. This paper provides a further step in this study and
adds an analysis of how the set of QoS parameters defined
by the DDS standard can be modelled using the real-time
end-to-end flow model in order to make the distributed
application analyzable via the traditional scheduling theory.

The document is organized as follows. Section 2 reviews
the main concepts of the real-time end-to-end flow model
used by MAST. In Section 3, we introduce the distribution
model proposed by DDS. In Section 4, we describe the QoS
parameters supported by DDS-based systems. The
modelling of these parameters using the end-to-end flow
model is discussed in Section 5. Finally, Section 6 draws the
conclusions.

II. THE REAL-TIME MODEL

We will use the general model of event-driven distributed
systems defined in [3] and [8], in which there is a set of
external events that cause the execution of operations, such
as the execution of tasks on the processors or the
transmission of messages through the networks. The
operations activate each other through internal events, which
can be generated both by tasks or messages. As an example,
the end-to-end flow model shown in Figure 1 consists
mainly of the following entities: (1) step, which is a kind of
Event_Handler that includes the operation to be executed
and the schedulable entity to execute the operation; (2)
merge, which is a king of Event_Handler that represents a
precedence relationship that generates its output event every
time one of its input events arrives; (3) workload and
internal events, which are the elements responsible for
triggering the execution of a step or are managed by other
Event_Handlers; and (4) observers, which are responsible1. This work has been funded in part by the Spanish Government under

grant number TIN2011-28567-C03-02 (HI-PARTES).

for monitoring a set of requirements associated with events
(e.g. deadline or queue size).

The end-to-end flow model enables the representation of
complex interactions among the responses to different event
sequences such as these proposed by the DDS specification,
and the application of schedulability analysis techniques to
determine whether timing requirements can be met or not in
a distributed real-time system.

III. DISTRIBUTION MODEL FOR DDS

The DDS conceptual model is based on the abstraction of
a strongly typed Global Data Space, where publisher and
subscriber respectively write (produce) and read (consume)
data, leading to a middleware focused on obtaining data
independently from its origin. To better handle the exchange
of data, the standard defines a set of entities involved in the
communication process. Applications that wish to share
information with others can use this Global Data Space to
declare their intent to publish data through the Data Writer
(DW) entity. Similarly, applications that need to receive
information can use the Data Reader (DR) entity to request
particular data. Publisher and Subscriber entities are
containers for several DWs and DRs respectively, which
share compatible QoS settings. Likewise, these entities are
grouped in Participants of a Domain. Only entities
belonging to the same Domain can communicate. At a higher
level of abstraction, the Participant entity contains all DWs,
DRs, Publishers and Subscribers that share compatible QoS
parameters in the corresponding Domain.

To exchange information among entities, Publishers only
need to know about the specific Topic (i.e. the data type to
share) and Subscribers require registration of their interest in
receiving particular Topics, while middleware will establish
and manage the communication almost transparently.

Finally, the DDS standard was explicitly designed to build
distributed real-time systems. To this end, this specification
adds a set of QoS parameters to configure non-functional
properties. In this case, DDS provides high flexibility in the

configuration of the system by associating a set of QoS
parameters to each individual entity. Furthermore, DDS
enables the modification of some of these parameters at
runtime while performing a dynamic reconfiguration of the
system. This set of QoS parameters is briefly reviewed in the
next section.

IV. SUPPORTED QOS PARAMETERS

The DDS standard defines several compliance profiles
which provide different kinds of services, but only the
Minimum profile is mandatory for any DDS implementation.
This profile defines most of the QoS parameters that can be
used in a DDS-based system, while the others usually add
optional settings to them. This set of QoS parameters enables
several aspects of data, networks and computing resources to
be configured and may be classified in the following
categories.

A Data Availability

It comprises the parameters used for controlling queuing
policies and data storage. The parameters that fall into this
category are the following:

• History specifies how many data samples will be stored
before their delivery. It is strongly linked to the optional
Ownership profile [1], which allows the configuration of
how many data samples can be stored. Under the
Minimum profile, there are only two settings available:
(1) to keep the most recent data sample or (2) to keep all
the received data samples.

• Durability determines whether previous data samples
should be delivered to late-joiners and where they
should be stored (e.g. memory or hard disk). Under the
Minimum profile, no samples must be delivered to late-
joiners.

• Lifespan defines a time period in which data samples
will be available to the application.

• Lifecycle controls the automatic removal of data samples
when their associated entities are no longer available.

B Maximum Resources

It limits the amount of resources that may be used in the
system through the following parameters:

• Resource_Limits specifies how much memory can be
used.

• Time_Based_Filter defines a minimum separation
period between received samples of each instance.

C Data Delivery

It specifies how data must be transmitted and presented to
the application. The parameters that fall into this category
are the following:

S1E1 I1

Timing Observer (D1 - Referenced to E1)

I2

I3 I4S3 S3

S2E2

End-to-end flow

Merge

Ek workload event Sk step Ik internal event Dk deadline

Timing Observer (D2 - Referenced to E2)

Figure 1. End-to-end flow model

• Reliability configures whether or not middleware will
automatically manage the communication to make it
reliable (i.e. no missed samples).

• Ownership specifies whether multiple DWs can update
the same data instance. Under the Minimum profile,
DRs will receive all the data samples generated from any
matching DW.

• Presentation controls how received samples are
presented to the application when the read operation is
called (i.e. ordered or coherent policies).

• Destination_Order determines the order in which
multiple samples of the same instance should be read
(i.e. by source or destination timestamp).

• Partition defines additional rules to match DRs and
DWs (besides matching the Topic and having
compatible QoS settings).

D User Configuration

User, Topic and Group Data represent extra information
that is attached to an entity when it is discovered or
instantiated. This information is used in an application-
defined way.

E Data Timeliness

It controls the latency in the distribution of data. The
parameters that fall into this category are the following:

• Deadline: This parameter indicates the maximum
amount of time available to send/receive data samples
belonging to a particular Topic.

• Latency_Budget: This parameter is defined as the
maximum acceptable delay in message delivery.

• Transport_Priority: This parameter allows the
specification of the priority of each network message for
a particular Topic. It is only associated to DW entities.

F System runtime configuration

These parameters control different configuration
mechanisms applied at runtime. The parameters that fall into
this category are the following:

• Entity_Factory indicates whether the DDS entities
should be enabled automatically or by the application.

• Liveliness determines whether or not a DDS entity is
still alive. It can take three different approaches
depending on how the liveliness is asserted:

• Automatic_Liveliness. It is managed automatically
by middleware which defines a built-in Topic (i.e.
DCPSParticipantMessage [12]) to send an ”alive”
signal.

• Manual_By_Participant. Liveliness is maintained by
middleware which must check periodically whether

the application has called any data or liveliness
related operations.

• Manual_By_Topic. Liveliness is managed by the
application by sending data or explicit Heartbeat
messages [12].

V. DISCUSSION

Once the set of QoS parameters has been introduced, this
section aims to discuss how to model them using the real-
time end-to-end flow model. To better focus on the
modelling issues, the following analysis assumes that the
discovery process is finished and there are no late-joiners
within the distributed system. Moreover, we will only
consider those QoS parameters and settings included in the
Minimum profile, and leave the optional profiles for future
analysis.

The effect of the QoS parameters defined by DDS over
the distributed system leads to different kinds of real-time
applications. To illustrate this behaviour, we will use the
example shown in Figure 2 which represents a distributed
system where Node 1 gets data from some peripheral and
send them to Node 2 to be processed. The first kind of real-
time application is called synchronized (Figure 3-A), where
each specific data sample has associated timing
requirements, and represents a simplified version of the end-
to-end flow model that includes the write and read
middleware operations within the Get data and Process data
steps, respectively. The second kind of real-time application
is called non-synchronized (Figure 3-B and C), in which the
operations for getting and processing data are decoupled.
Thus, this kind of system is modelled by two independent
end-to-end flows, which may be activated by different
workload events with different periods.

Once the basis for the analysis is established, it will be
performed following the same categories specified in the
previous Section.

A Data Availability

The Data Availability parameters defined by DDS allow
users to control how many data samples can be stored. In

Network

Node 1 Node 2

Get data Process data

Writes Reads

Compatible
QoSDW DR

Middleware logicApplication logic

Figure 2. Real-time application using DDS

relation to synchronized applications, the schedulability
analysis does not consider discarded samples and therefore
this kind of systems should be configured to store each data
sample (e.g. by setting the KEEP_ALL value [1] for History
QoS parameter). In this case, the Lifespan and Lifecycle
parameters should also be configured to avoid the removal of
data samples.

For non-synchronized applications, the schedulability
analysis can manage discarded data samples by defining
different end-to-end flows (1) to publish data samples and
(2) to process them (e.g., as shown in Figure 3-B). In this
case, History should be set to KEEP_LAST [1].

Under the Minimum profile, the Durability parameter can
only be set to VOLATILE [1] which has no effect on the
schedulability analysis.

B Maximum Resources

The Maximum Resources parameters enable the use of
DDS over resource-constrained systems (e.g. embedded
systems). To deal with memory constraints, Resource_Limits
controls the amount of memory that can be allocated to store

data samples. In the case of synchronized applications, this
value should be specified through the Queue_Size_Req
Observer entity defined by the MAST end-to-end flow
model. This entity represents the maximum number of
pending activations that are admitted in the system in order
to avoid the loss of any sample. Furthermore, the current
schedulability analysis techniques included in MAST are
capable of estimating this value through the
Num_Of_Queued_Activations parameter.

The Time_Based_Filter reduces the number of data
samples received by a DR and therefore it decouples a DR
from its matched DW. Consequently, the use of this QoS
parameter leads to a non-synchronized real-time application.
According to the DDS-related standards [1] [12], time
filtering can be applied on the reader or writer side. If on the
former, data samples are transmitted through the network but
are filtered before being processed. Therefore, this behaviour
can be modelled as a stream of data samples that have a
minimum interarrival time (i.e. sporadic workload events
[8]) equal to the minimum_separation period [1]. If we again
consider the example illustrated in Figure 2 but adding the
time filtering, the resulting model is the one shown in Figure
3-B. When filtering is applied on the writer side, data
samples are filtered before transmitting them through the
network to avoid overusing network resources. This
behaviour can also be modelled as a stream of data samples
with a minimum interarrival time, which is shown in Figure
3-C. Furthermore, the standard specifies that additional
network messages should be sent to disseminate the fact that
those samples have been filtered and not simply lost, which
should also be modelled and included in the schedulability
analysis.

C Data Delivery

The Data Delivery parameters provide different
mechanisms to manage data samples. From the
schedulability analysis perspective, reliable communication
increases the network traffic and this overhead must be taken
into account for the analysis. Moreover, the standard does
not determine the middleware behaviour for reliable
communications, and leaves multiple aspects open to
implementations (i.e. the number and timing characteristics
of messages used for acknowledgments, or whether multiple
RTPS submessages can be coalesced into the same message).

Under the Minimum profile, the Ownership parameter
can only be set to shared and therefore DRs can receive data
from any matching DW. This behaviour can be modelled as a
Merge entity from the MAST model (see Figure 1).

The Presentation parameter would add an extra step to
execute the desired policy when all data samples are
available. However, the standard does not specify whether
this parameter requires the use of reliable connections, in

Get
data

E1

I1

Timing Observer (D1)

I2 I3
Send
data

Process
data

End-to-end flow

(A)

Get
data

E1

E2

I1

Timing Observer (D2)

Send
data

End-to-end flow 1

I2

I3
Process

data

End-to-end flow 2
(B) Timing Observer (D1)

(C)

Get
data

E1

E2

I2

Timing Observer (D2)

Send
data

End-to-end flow 1

I1

I3
Process

data

End-to-end flow 2
Timing Observer (D1)

Figure 3. Synchronized (A) and non-synchronized (B,C) models for the
real-time application

which case the predictability of this policy would depend on
each implementation.

The schedulability analysis based on the end-to-end flow
model usually takes the delivery of data samples according
to the order in which they are received, as network delays are
already considered in the response time analysis. If
Destination_Order is configured to deliver data samples to
DRs in the order in which they were sent, some of these
samples may be dropped as they can arrive out of order.
When the real-time application can tolerate the loss of data
samples, the schedulability analysis will assume that all the
samples are delivered to the DR and processed by the
application. However, the issue of how to set the source
timestamp is not defined in the standard and remains open to
implementations.

In relation to the Partition parameter, it does not add any
extra modelling entity to the real-time end-to-end model.

D User Configuration

The parameters related to the User Configuration allow
extra information to be added to each entity at application
level. These parameters are transparent to the schedulability
analysis.

E Data Timeliness

The three parameters of Data Timeliness are particularly
important in the management of resources for real-time
systems. The Transport_Priority parameter represents the
scheduling parameters for the communication networks.
However, as shown in [11], the DDS specification does not
explicitly address the scheduling of tasks in the processors,
as this is an implementation-defined aspect. Thus, for
example, the Deadline parameter does not define any
associated mechanism to enforce this timing requirement
and therefore this QoS parameter only represents a
notification service in which middleware informs the
application that the deadline has been missed. Therefore, this
notification service should be modelled as a new linear end-
to-end flow.

In the case of the Latency_Budget, the standard
emphasizes that this parameter must not be enforced or
controlled by middleware and, consequently, indicates the
urgency in the processing of data samples. Therefore, it can
be considered as a best-effort parameter to configure the
internal behaviour of middleware, and its modelling would
depend on the selected implementation.

F System runtime configuration

Regarding the Entity_Factory parameter, any setting is
suitable for timing analysis.

Finally, the Liveliness parameter allows DRs to detect
when matching DWs have been disconnected. When the
liveliness kind Automatic_Liveliness is used, the

schedulability analysis must take into account the overhead
introduced by the new Topic and its corresponding entities in
order to manage the publication and subscription operations.
Furthermore, this parameter would add a new end-to-end
flow per Participant for the assertion of liveliness. However,
the standard specifies that the kind of reliability of these
built-in entities must be set to RELIABLE, and therefore this
mechanism would be suitable for schedulability analysis
depending on each specific implementation. Similarly,
middleware will be in charge of refreshing the liveliness
through the same built-in and reliable entities when the
setting Manual_By_Participant is used. Lastly, the liveliness
setting Manual_By_Topic can be managed by the application
in an explicit way, which would add a new end-to-end flow
per DW to the real-time model, or in an implicit way by
sending data.

Summary

A comprehensive summary of the results obtained is
shown in Table 1. This Table shows the different QoS
parameters classified according to the established categories,
their available values, whether these values are suitable for
the schedulability analysis and their corresponding end-to-
end flow modelling entities.

VI. CONCLUSIONS AND FUTURE WORK

The paper presents a study of the real-time modelling of
advanced configurations for DDS-based applications. In
particular, it discusses how to represent the QoS mechanisms
defined by the DDS standard using the real-time end-to-end
flow model.

The modelling and timing analysis of DDS-based
applications strongly depends on the nature of the real-time
application. Thus, real-time synchronized applications
should configure their QoS parameters to avoid the dropping
of data samples. Furthermore, the DDS standard leaves
multiple aspects dependent on middleware, such as the
implementation of the Latency_Budget and Reliability QoS
parameters. The latter also influences the modelling of other
DDS features, such as those related to the Automatic or the
Manual_By_Participant liveliness. Therefore, each DDS
implementation should provide information on the
modelling and usability of these QoS parameters for real-
time systems.

Future work will include the completion of this study by
integrating the optional profiles defined by the DDS
specification, such as the Persistence or the Ownership
profiles. Furthermore, there are still several aspects to be
analysed that may affect the determinism of the distributed
system, for instance, the influence of the built-in entities,
dynamic systems or the discovery process.

REFERENCES

[1] “Data Distribution Service for Real-time Systems” (v1.2),
Object Management Group, Doc. formal/07-01-01, 2007.

[2] Kang, W., Kapitanova, K. and Sang Hyuk Son: “RDDS: A
Real-Time Data Distribution Service for Cyber-Physical
Systems”, IEEE Transactions on Industrial Informatics, vol.8,
no.2, 2012, pp.393-405.

[3] “A UML Profile for MARTE: Modeling and Analysis of Real-
Time Embedded Systems”, Object Management Group, OMG
Document ptc/2009-11-02, 2009, pp. --.

[4] Tindell, K. and Clark, J. “Holistic schedulability analysis for
distributed hard real-time systems”, Microprocessors and
Microprogramming Journal (40), 1994, pp. 117-134.

[5] Palencia, J. C., Gutiérrez, J. J. and González, M. “On the
schedulability analysis for distributed hard real-time
systems”, in Proceedings of the Ninth Euromicro Workshop
on Real-Time Systems, 1997, pp. 136 -143.

[6] Fohler, G. “Joint scheduling of distributed complex periodic
and hard aperiodic tasks in statically scheduled systems”, in
Proceedings of the 16th IEEE Real-Time Systems
Symposium, 1995, pp.152-161.

[7] Gutiérrez, J. J., Palencia, J. C. and González, M.
“Schedulability analysis of distributed hard real-time systems

with multiple-event synchronization”, in Proceedings of the
12th Euromicro conference on Real-time systems' IEEE
Computer Society, Washington, DC, USA, 2000, pp. 15-24.

[8] González, M., Gutiérrez J. J., Palencia J. C. and Drake J. M.
“MAST: Modeling and Analysis Suite for Real Time
Applications”, in Proceedings of the 13th Euromicro
Conference on Real-Time Systems, IEEE Computer Society,
Washington, DC, USA, 2001, pp. 125-134.

[9] González, M. Gutiérrez, J. J., Drake, J. M., López, P. and
Palencia, J. C. “Modeling distributed real-time systems with
MAST 2”, In Press, Journal of Systems Architecture, http://
dx.doi.org/10.1016/j.sysarc.2012.02.001, 2012.

[10] Joe Hoffert, Douglas Schmidt, and Aniruddha Gokhale. “A
QoS policy configuration modeling language for publish/
subscribe middleware platforms”. In Proceedings of the
International Conference on Distributed event-based systems
(DEBS), 2007. ACM, New York, NY, USA, 140-145.

[11] Pérez, H. and Gutiérrez, J. J. “On the schedulability of a data-
centric real-time distribution middleware”, Computer
Standards & Interfaces (34:0), 2012, pp. 203-211.

[12] The Real-time Publish-Subscribe Wire Protocol. DDS
Interoperability Wire Protocol Specification”, Object
Management Group, 2009.

Table 1: Comprehensive summary of the modelling of DDS QoS parameters

QoS parameters Value Analyzable End-to-end flow modelling

Data Availability History Any Conditioned Synchronized / Non-synchronized app.

Durability Volatilea Yes -

Lifespan Any Conditioned Synchronized / Non-synchronized app.

Lifecycle Any Conditioned Synchronized / Non-synchronized app.

Maximum resources Resource_Limits Any Yes Queue_Size_Req Observer

Time_Based_Filter Any Conditioned Sporadic workload events

Data Delivery Reliability Best effort Yes -

Reliable Conditioned Implementation-specific

Ownership Shareda Yes Merge

Presentation Any Yes Step

Destination_Order By reception timestamp Yes -

By source timestamp Conditioned Implementation-specific

Partition Any Yes -

User Configuration User, Topic and
Group Data

Any Yes -

Data Timeliness Deadline Any Yes New end-to-end flow

Latency_Budget Any Conditioned Implementation-specific

Transport_Priority Any Yes Scheduling parameter

System Runtime
Configuration

Entity Factory Any Yes -

Liveliness Automatic Conditioned Implementation-specific

Manual_By_Participant Conditioned Implementation-specific

Manual_By_Topic Yes New end-to-end flow per DW for explicit
assertion of liveliness

a. Available values defined by the Minimum profile

