
Background Objectives Work done Conclusions Questions

Implementation of a Flexible Real-Time Scheduling
Middleware Based on Contracts

Implementación de un middleware de planificación flexible de tiempo real basado en

contratos

Miguel Telleria de Esteban
directed by Michael González Harbour

Universidad de Cantabria – Computadores y Tiempo Real

30 Oct. 2008

Work done under FRESCOR project (FP6/2005/IST/5-034026) funded
in part by the European Union’s Sixth Framework Programme.

Background Objectives Work done Conclusions Questions

Copyright notice

This document, Implementation of a Flexible Real-Time Scheduling Middle-
ware Based on Contracts by Miguel Telleria from Computadores y Tiempo
Real, Univ. de Cantabria a is licensed under a Creative Commons Attribu-
tion Sharealike 3.0 license b.

ahttp://www.ctr.unican.es
bhttp://creativecommons.org/licenses/by-sa/3.0/legalcode/

This means that you are free:

To share, to copy, distribute and transmit the work.

To remix, to adapt the work (even for commercial purposes).

Under the following conditions:

Attribution You must give the original author credit.

ShareAlike If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

Any of the above conditions can be waived if you get permission from the copyright holder.

Original editable LATEX content should be available from the same source of the binary
document or from the copyright holder possibly upon request.

http://www.ctr.unican.es
http://creativecommons.org/licenses/by-sa/3.0/legalcode/

Background Objectives Work done Conclusions Questions

Outline

1 Background and motivation
Flexible scheduling
FIRST and FRESCOR projects

2 Objectives

3 Work done
Global architecture
Migration process
New additions

4 Conclusions
Status of FRSH
Conclusions and lessons learned

Background Objectives Work done Conclusions Questions

Outline

1 Background and motivation
Flexible scheduling
FIRST and FRESCOR projects

2 Objectives

3 Work done
Global architecture
Migration process
New additions

4 Conclusions
Status of FRSH
Conclusions and lessons learned

Background Objectives Work done Conclusions Questions

Flexible scheduling

Embedded Real-Time systems

Definitions
Embedded systems: Computers considered an integral part of a
larger system that they control and/or monitor.
Real Time system: Having results on time is as important as the
results themselves.

Goal: Time predictability

At hardware level (detection of events, transmission of actions).
At operating system and network level (context switch, timed services,
interrupt latency, network Tx/Rx...).
At the application level (through analysis techniques).

Background Objectives Work done Conclusions Questions

Flexible scheduling

Embedded Real-Time systems

Definitions
Embedded systems: Computers considered an integral part of a
larger system that they control and/or monitor.
Real Time system: Having results on time is as important as the
results themselves.

Goal: Time predictability

At hardware level (detection of events, transmission of actions).
At operating system and network level (context switch, timed services,
interrupt latency, network Tx/Rx...).
At the application level (through analysis techniques).

Background Objectives Work done Conclusions Questions

Flexible scheduling

Hard real time vs Flexible real time

Traditional real-time
Worst case response.
Static resource allocation.

Single mode

No time protection.
No adaptation to load change.

Flexible real-time
Worst case response + QoS
Dynamic resource allocation

Multiple mode

Time protection.
Load change adaptation:

Spare capacity: (mode
change)
Dynamic reclamation:
(execution)

Benefits of Flexible Scheduling

Maximise resource usage.
Integration of heterogeneous resource requirements.
Real time theory implicitely integrated in system.

Background Objectives Work done Conclusions Questions

Flexible scheduling

Hard real time vs Flexible real time

Traditional real-time
Worst case response.
Static resource allocation.

Single mode

No time protection.
No adaptation to load change.

Flexible real-time
Worst case response + QoS
Dynamic resource allocation

Multiple mode

Time protection.
Load change adaptation:

Spare capacity: (mode
change)
Dynamic reclamation:
(execution)

Benefits of Flexible Scheduling

Maximise resource usage.
Integration of heterogeneous resource requirements.
Real time theory implicitely integrated in system.

Background Objectives Work done Conclusions Questions

Flexible scheduling

Hard real time vs Flexible real time

Traditional real-time
Worst case response.
Static resource allocation.

Single mode

No time protection.
No adaptation to load change.

Flexible real-time
Worst case response + QoS
Dynamic resource allocation

Multiple mode

Time protection.
Load change adaptation:

Spare capacity: (mode
change)
Dynamic reclamation:
(execution)

Benefits of Flexible Scheduling

Maximise resource usage.
Integration of heterogeneous resource requirements.
Real time theory implicitely integrated in system.

Background Objectives Work done Conclusions Questions

Flexible scheduling

Hard real time vs Flexible real time

Traditional real-time
Worst case response.
Static resource allocation.

Single mode

No time protection.
No adaptation to load change.

Flexible real-time
Worst case response + QoS
Dynamic resource allocation

Multiple mode

Time protection.
Load change adaptation:

Spare capacity: (mode
change)
Dynamic reclamation:
(execution)

Benefits of Flexible Scheduling

Maximise resource usage.
Integration of heterogeneous resource requirements.
Real time theory implicitely integrated in system.

Background Objectives Work done Conclusions Questions

Flexible scheduling

Hard real time vs Flexible real time

Traditional real-time
Worst case response.
Static resource allocation.

Single mode

No time protection.
No adaptation to load change.

Flexible real-time
Worst case response + QoS
Dynamic resource allocation

Multiple mode

Time protection.
Load change adaptation:

Spare capacity: (mode
change)
Dynamic reclamation:
(execution)

Benefits of Flexible Scheduling

Maximise resource usage.
Integration of heterogeneous resource requirements.
Real time theory implicitely integrated in system.

Background Objectives Work done Conclusions Questions

Flexible scheduling

Flexible Scheduling Execution

Mode 1: CA = 3 TA = 6 CB = 1 TB = 3
Mode 2: CA = 1 TA = 3 CB = 3 TB = 6

t

t

5

5

10

10

15

15

20

20
τA

τB

1

Background Objectives Work done Conclusions Questions

Flexible scheduling

Contract model

Requirements specified in contract

Minimum capacity: budgetmin (C), periodmax (T) and deadline (D).
Extra capacity: Range or discrete values of (C, T, D).
Task model: Job-based, continuous, background.
Importance and weight as criteria for spare capacity distribution.
Critical sections (with their WCET) on shared objects.

Negotiation and binding
Negotiation

Contract

Vres
Vres

thread Binding

Vres

thread

Background Objectives Work done Conclusions Questions

Flexible scheduling

Contract model

Requirements specified in contract

Minimum capacity: budgetmin (C), periodmax (T) and deadline (D).
Extra capacity: Range or discrete values of (C, T, D).
Task model: Job-based, continuous, background.
Importance and weight as criteria for spare capacity distribution.
Critical sections (with their WCET) on shared objects.

Negotiation and binding
Negotiation

Contract

Vres
Vres

thread Binding

Vres

thread

Background Objectives Work done Conclusions Questions

FIRST and FRESCOR projects

FIRST project

4 academic partners: UC, Pisa, York, Mälardalen (Suecia)
Outcome: FSF: First Scheduling Framework

FSF Achievements
Proved the contract model on MaRTE-OS (fixed priorities) and
S.Ha.R.K (EDF).
Resources: CPU and network (MaRTE-OS only).
Spare capacity distribution for CPU only.
Dynamic reclamation (S.Ha.R.K. only).
Utilisation-based analysis.
Hierarchical scheduling (S.Ha.R.K. only).

FSF weak aspects

Implemented only in academic operating systems.
Prototype approach.

Background Objectives Work done Conclusions Questions

FIRST and FRESCOR projects

FIRST project

4 academic partners: UC, Pisa, York, Mälardalen (Suecia)
Outcome: FSF: First Scheduling Framework

FSF Achievements
Proved the contract model on MaRTE-OS (fixed priorities) and
S.Ha.R.K (EDF).
Resources: CPU and network (MaRTE-OS only).
Spare capacity distribution for CPU only.
Dynamic reclamation (S.Ha.R.K. only).
Utilisation-based analysis.
Hierarchical scheduling (S.Ha.R.K. only).

FSF weak aspects

Implemented only in academic operating systems.
Prototype approach.

Background Objectives Work done Conclusions Questions

FIRST and FRESCOR projects

FRESCOR project

Execution Platforms

OSE AQuoSA PaRTiKle MaRTE OS
RapiTime

simulator

FRSH

Middleware

RapiTime

WCET tool

QoS

Adapter

distributed

Transaction

layer

MyCCM

Component

Framework

Response−time

analysis

encapsulates

runs on

designed on

 top of

designed on

 top of

integrated in

FSF evolves into FRSH

Background Objectives Work done Conclusions Questions

FIRST and FRESCOR projects

Making life easier for Real Time developers

FRSH relieves the application from:

Computation of capacity distribution.
Operating system scheduling policies.
Enforcement of assigned capacity, by providing time isolation to
application components.

FRSH Facilitates:
Implementation of QoS policy to maximize resource usage.
Guaranteed transactions in distributed systems.
Encapsulate time requirements in Software Components or other
abstractions.

Background Objectives Work done Conclusions Questions

FIRST and FRESCOR projects

Making life easier for Real Time developers

FRSH relieves the application from:

Computation of capacity distribution.
Operating system scheduling policies.
Enforcement of assigned capacity, by providing time isolation to
application components.

FRSH Facilitates:
Implementation of QoS policy to maximize resource usage.
Guaranteed transactions in distributed systems.
Encapsulate time requirements in Software Components or other
abstractions.

Background Objectives Work done Conclusions Questions

Outline

1 Background and motivation
Flexible scheduling
FIRST and FRESCOR projects

2 Objectives

3 Work done
Global architecture
Migration process
New additions

4 Conclusions
Status of FRSH
Conclusions and lessons learned

Background Objectives Work done Conclusions Questions

Objectives of this work

Evolution of FRSH-ADS for CPU’s during the FRESCOR project on
MaRTE-OS.

Migration tasks
1 Extend FSF to multiple execution platforms

1 Define a neutral platform API.
2 Port FSF to this platform.

2 Port FSF to the new FRSH API.

New additions
1 Define a pluggable interface for scheduling analysis.
2 Contract group negotiation.
3 Time protection for shared objects.

Background Objectives Work done Conclusions Questions

Objectives of this work

Evolution of FRSH-ADS for CPU’s during the FRESCOR project on
MaRTE-OS.

Migration tasks
1 Extend FSF to multiple execution platforms

1 Define a neutral platform API.
2 Port FSF to this platform.

2 Port FSF to the new FRSH API.

New additions
1 Define a pluggable interface for scheduling analysis.
2 Contract group negotiation.
3 Time protection for shared objects.

Background Objectives Work done Conclusions Questions

Outline

1 Background and motivation
Flexible scheduling
FIRST and FRESCOR projects

2 Objectives

3 Work done
Global architecture
Migration process
New additions

4 Conclusions
Status of FRSH
Conclusions and lessons learned

Background Objectives Work done Conclusions Questions

Global architecture

Global Picture

App thread 1

VRES 1

App thread n

VRES n

Operating System

FOSA implementation

FRSH Implementation

FOSA api

FRSH api

...

Background Objectives Work done Conclusions Questions

Global architecture

FOSA layer

App thread 1

VRES 1

App thread n

VRES n

Native OS services

thread and signals

longjump

mutexes

clocks and timersapp def sched

FOSA implementation

FRSH Implementation

API
call

FOSA api

FRSH api

...

OS
call

OS dependent
OS independent

time func

API agreed between FRSH
platform providers.
POSIX Neutral names for OS
services.
Scope: FRSH.

Background Objectives Work done Conclusions Questions

Global architecture

FOSA layer

App thread 1

VRES 1

App thread n

VRES n

Native OS services

thread and signals

longjump

mutexes

clocks and timersapp def sched

FOSA implementation

FRSH Implementation

API
call

FOSA api

FRSH api

...

OS
call

OS dependent
OS independent

time func

API agreed between FRSH
platform providers.
POSIX Neutral names for OS
services.
Scope: FRSH.

Background Objectives Work done Conclusions Questions

Global architecture

FOSA layer

App thread 1

VRES 1

App thread n

VRES n

Native OS services

thread and signals

longjump

mutexes

clocks and timersapp def sched

FOSA implementation

FRSH Implementation

API
call

FOSA api

FRSH api

...

OS
call

OS dependent
OS independent

time func

API agreed between FRSH
platform providers.
POSIX Neutral names for OS
services.
Scope: FRSH.

Background Objectives Work done Conclusions Questions

Global architecture

Application Defined Scheduling

Init

New Thread

Terminate

Ready

Block

Explicit Call

Signal

Timeout

...

Internal Status:

-task queue

-event queue

-...

Native
Scheduler

Application
Defined
Scheduler

Operating
System

Invoke

Return

Scheduling

Actions Event driven
Interferes with
native scheduler
Threads ADS or
non ADS

Background Objectives Work done Conclusions Questions

Global architecture

Application Defined Scheduling

Init

New Thread

Terminate

Ready

Block

Explicit Call

Signal

Timeout

...

Internal Status:

-task queue

-event queue

-...

Native
Scheduler

Application
Defined
Scheduler

Operating
System

Invoke

Return

Scheduling

Actions Event driven
Interferes with
native scheduler
Threads ADS or
non ADS

Background Objectives Work done Conclusions Questions

Global architecture

Application Defined Scheduling

Init

New Thread

Terminate

Ready

Block

Explicit Call

Signal

Timeout

...

Internal Status:

-task queue

-event queue

-...

Native
Scheduler

Application
Defined
Scheduler

Operating
System

Invoke

Return

Scheduling

Actions Event driven
Interferes with
native scheduler
Threads ADS or
non ADS

Background Objectives Work done Conclusions Questions

Global architecture

FRSH architecture

FRSH

API Front-End

RUN TIME data

General datathread datathread data vres datavres data

thread-specific API parameters

sjobs
sync

queue

service,
thread

ANALYSIS data

scenariosscenarios

App

Scheduler

new_thread

block

explicit call

...
unblock

signal

FSA
plugin

FOSA

data code

Application level

Operating System

Background Objectives Work done Conclusions Questions

Migration process

Porting to new FRSH API

New FRSH API and Platform
Service thread now scheduled by FRSH

Rationale: PaRTiKle and OSE lack native sporadic server support.
server term renamed to vres

Rationale: More explicit and less ambiguous meaning.
Abstraction of time types in FRSH and FOSA

Rationale: Time representation platform specific (64/32/16bit, struct...).
Separate API functions for non-FRSH threads

Rationale: Application designer must give them special treatment.

Code rewriting

Follow FSF decisions (time enforcement, callbacks)
More modularity (intermediate functions, abstract types)
Document all global variables in the code

Use a version control system (subversion)
Remove obsoleted commented code.
Allows parallel development while preserving a functional version.

Background Objectives Work done Conclusions Questions

Migration process

Porting to new FRSH API

New FRSH API and Platform
Service thread now scheduled by FRSH

Rationale: PaRTiKle and OSE lack native sporadic server support.
server term renamed to vres

Rationale: More explicit and less ambiguous meaning.
Abstraction of time types in FRSH and FOSA

Rationale: Time representation platform specific (64/32/16bit, struct...).
Separate API functions for non-FRSH threads

Rationale: Application designer must give them special treatment.

Code rewriting

Follow FSF decisions (time enforcement, callbacks)
More modularity (intermediate functions, abstract types)
Document all global variables in the code

Use a version control system (subversion)
Remove obsoleted commented code.
Allows parallel development while preserving a functional version.

Background Objectives Work done Conclusions Questions

New additions

FSA plugins

Contract
2

vres
A

Contract
1

Prospective scenario

vres A
CA1

vres A
CA1

vres
A

Contract
1

shared
object
shared
object

priorities
overhead
model

synchronize

renegotiate
contract

add new contract

contract changes
additions and removals

● assign priorities
● assign ceilings
● schedulability test
● spare capacity
 distribution

apply
changes

analysis
computations

Scheduling Analysis API

Running scenario

shared
object
shared
object

priorities
overhead
model

vres
A

Contract
1

vres
A

Contract
1

vres
A

Contract
1

vres
C

Contract
3

Background Objectives Work done Conclusions Questions

New additions

Protected shared objects

Rollback

Vres B

thread

Vres A

thread

Shared object

WCET A

WCET B

Blocked

Allowed to pass

WCET exceeded

Background Objectives Work done Conclusions Questions

Outline

1 Background and motivation
Flexible scheduling
FIRST and FRESCOR projects

2 Objectives

3 Work done
Global architecture
Migration process
New additions

4 Conclusions
Status of FRSH
Conclusions and lessons learned

Background Objectives Work done Conclusions Questions

Status of FRSH

Contributions

Achievements
FRSH has consolidated FSF functionality.

Now supported on several platforms (and others may join).
Using new FRSH API

A pluggable scheduling analysis interface has been defined.
Original FSF utilisation-based analysis has been extended to multiple
changes.
FRSH now supports response-time analysis.

Time protection for critical section is provided.

Background Objectives Work done Conclusions Questions

Status of FRSH

Contributions

Achievements
FRSH has consolidated FSF functionality.

Now supported on several platforms (and others may join).
Using new FRSH API

A pluggable scheduling analysis interface has been defined.
Original FSF utilisation-based analysis has been extended to multiple
changes.
FRSH now supports response-time analysis.

Time protection for critical section is provided.

Background Objectives Work done Conclusions Questions

Status of FRSH

Contributions

Achievements
FRSH has consolidated FSF functionality.

Now supported on several platforms (and others may join).
Using new FRSH API

A pluggable scheduling analysis interface has been defined.
Original FSF utilisation-based analysis has been extended to multiple
changes.
FRSH now supports response-time analysis.

Time protection for critical section is provided.

Background Objectives Work done Conclusions Questions

Status of FRSH

Left to do

Small issues
Explicit functions for external threads, e.g. Ada tasks
Support for synchronised workload.
POSIX sporadic server corrections.
Front-End support for group negotiations.

Medium complexity

Improvement in shared objects time protection.

Large complexity

Hierarchical scheduling
Stability time
Industrial validation

Background Objectives Work done Conclusions Questions

Status of FRSH

Left to do

Small issues
Explicit functions for external threads, e.g. Ada tasks
Support for synchronised workload.
POSIX sporadic server corrections.
Front-End support for group negotiations.

Medium complexity

Improvement in shared objects time protection.

Large complexity

Hierarchical scheduling
Stability time
Industrial validation

Background Objectives Work done Conclusions Questions

Status of FRSH

Left to do

Small issues
Explicit functions for external threads, e.g. Ada tasks
Support for synchronised workload.
POSIX sporadic server corrections.
Front-End support for group negotiations.

Medium complexity

Improvement in shared objects time protection.

Large complexity

Hierarchical scheduling
Stability time
Industrial validation

Background Objectives Work done Conclusions Questions

Conclusions and lessons learned

Conclusions and lessons learned

Conclusions
FRSH is now more mature, documented and maintainable but it is still
work in progress.
It is starting to be used as a base for other works.

Lessons learned
Substantial effort has been spent in non business tasks (renaming,
refactoring with abstract data types).
We need to generate complete documentation for newcomers.
Extra effort in documenting and making source code maintainable pays
off later.

Background Objectives Work done Conclusions Questions

Conclusions and lessons learned

Conclusions and lessons learned

Conclusions
FRSH is now more mature, documented and maintainable but it is still
work in progress.
It is starting to be used as a base for other works.

Lessons learned
Substantial effort has been spent in non business tasks (renaming,
refactoring with abstract data types).
We need to generate complete documentation for newcomers.
Extra effort in documenting and making source code maintainable pays
off later.

Background Objectives Work done Conclusions Questions

Conclusions and lessons learned

Conclusions and lessons learned

Conclusions

FRSH is now more mature, documented and maintainable but it is still
work in progress .

It is starting to be used as a base for other works.

Lessons learned

Substantial effort has been spent in non business tasks (renaming,
refactoring with abstract data types).

We need to generate complete documentation for newcomers.

Extra effort in documenting and making source code maintainable pays
off later.

Background Objectives Work done Conclusions Questions

Conclusions and lessons learned

Conclusions and lessons learned

Conclusions
FRSH is now more mature, documented and maintainable but it is still
work in progress.
It is starting to be used as a base for other works.

Lessons learned
Substantial effort has been spent in non business tasks (renaming,
refactoring with abstract data types).
We need to generate complete documentation for newcomers.
Extra effort in documenting and making source code maintainable pays
off later.

Background Objectives Work done Conclusions Questions

Thank your for your attention
Questions?

	Background and motivation
	Flexible scheduling
	FIRST and FRESCOR projects

	Objectives
	Work done
	Global architecture
	Migration process
	New additions

	Conclusions
	Status of FRSH
	Conclusions and lessons learned

	Questions

