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Flexible scheduling

Embedded Real-Time systems

Definitions
Embedded systems: Computers considered an integral part of a
larger system that they control and/or monitor.
Real Time system: Having results on time is as important as the
results themselves.

Goal: Time predictability

At hardware level (detection of events, transmission of actions).
At operating system and network level (context switch, timed services,
interrupt latency, network Tx/Rx...).
At the application level (through analysis techniques).
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Flexible scheduling

Hard real time vs Flexible real time

Traditional real-time
Worst case response.
Static resource allocation.

Single mode

No time protection.
No adaptation to load change.

Flexible real-time
Worst case response + QoS
Dynamic resource allocation

Multiple mode

Time protection.
Load change adaptation:

Spare capacity: (mode
change)
Dynamic reclamation:
(execution)

Benefits of Flexible Scheduling

Maximise resource usage.
Integration of heterogeneous resource requirements.
Real time theory implicitely integrated in system.
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Flexible scheduling

Flexible Scheduling Execution

Mode 1: CA = 3 TA = 6 CB = 1 TB = 3
Mode 2: CA = 1 TA = 3 CB = 3 TB = 6
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Flexible scheduling

Contract model

Requirements specified in contract

Minimum capacity: budgetmin (C), periodmax (T) and deadline (D).
Extra capacity: Range or discrete values of (C, T, D).
Task model: Job-based, continuous, background.
Importance and weight as criteria for spare capacity distribution.
Critical sections (with their WCET) on shared objects.

Negotiation and binding
Negotiation

Contract

Vres
Vres

thread Binding

Vres

thread
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FIRST and FRESCOR projects

FIRST project

4 academic partners: UC, Pisa, York, Mälardalen (Suecia)
Outcome: FSF: First Scheduling Framework

FSF Achievements
Proved the contract model on MaRTE-OS (fixed priorities) and
S.Ha.R.K (EDF).
Resources: CPU and network (MaRTE-OS only).
Spare capacity distribution for CPU only.
Dynamic reclamation (S.Ha.R.K. only).
Utilisation-based analysis.
Hierarchical scheduling (S.Ha.R.K. only).

FSF weak aspects

Implemented only in academic operating systems.
Prototype approach.
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FIRST and FRESCOR projects

FRESCOR project

Execution Platforms

OSE AQuoSA PaRTiKle MaRTE OS
RapiTime

simulator

FRSH
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RapiTime
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designed on
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FSF evolves into FRSH
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FIRST and FRESCOR projects

Making life easier for Real Time developers

FRSH relieves the application from:

Computation of capacity distribution.
Operating system scheduling policies.
Enforcement of assigned capacity, by providing time isolation to
application components.

FRSH Facilitates:
Implementation of QoS policy to maximize resource usage.
Guaranteed transactions in distributed systems.
Encapsulate time requirements in Software Components or other
abstractions.
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Objectives of this work

Evolution of FRSH-ADS for CPU’s during the FRESCOR project on
MaRTE-OS.

Migration tasks
1 Extend FSF to multiple execution platforms

1 Define a neutral platform API.
2 Port FSF to this platform.

2 Port FSF to the new FRSH API.

New additions
1 Define a pluggable interface for scheduling analysis.
2 Contract group negotiation.
3 Time protection for shared objects.
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Global architecture

Global Picture

App thread 1

VRES 1
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Operating System

FOSA implementation

FRSH Implementation

FOSA api

FRSH api
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OS dependent
OS independent
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API agreed between FRSH
platform providers.
POSIX Neutral names for OS
services.
Scope: FRSH.
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Global architecture

Application Defined Scheduling

Init

New Thread

Terminate
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Block
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Timeout
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Internal Status:
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Operating 
System

Invoke

Return 

Scheduling 

Actions Event driven
Interferes with
native scheduler
Threads ADS or
non ADS
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Global architecture

FRSH architecture
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Migration process

Porting to new FRSH API

New FRSH API and Platform
Service thread now scheduled by FRSH

Rationale: PaRTiKle and OSE lack native sporadic server support.
server term renamed to vres

Rationale: More explicit and less ambiguous meaning.
Abstraction of time types in FRSH and FOSA

Rationale: Time representation platform specific (64/32/16bit, struct...).
Separate API functions for non-FRSH threads

Rationale: Application designer must give them special treatment.

Code rewriting

Follow FSF decisions (time enforcement, callbacks)
More modularity (intermediate functions, abstract types)
Document all global variables in the code

Use a version control system (subversion)
Remove obsoleted commented code.
Allows parallel development while preserving a functional version.
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New additions
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New additions

Protected shared objects
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Status of FRSH

Contributions

Achievements
FRSH has consolidated FSF functionality.

Now supported on several platforms (and others may join).
Using new FRSH API

A pluggable scheduling analysis interface has been defined.
Original FSF utilisation-based analysis has been extended to multiple
changes.
FRSH now supports response-time analysis.

Time protection for critical section is provided.
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Status of FRSH

Left to do

Small issues
Explicit functions for external threads, e.g. Ada tasks
Support for synchronised workload.
POSIX sporadic server corrections.
Front-End support for group negotiations.

Medium complexity

Improvement in shared objects time protection.

Large complexity

Hierarchical scheduling
Stability time
Industrial validation
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Conclusions and lessons learned

Conclusions
FRSH is now more mature, documented and maintainable but it is still
work in progress.
It is starting to be used as a base for other works.

Lessons learned
Substantial effort has been spent in non business tasks (renaming,
refactoring with abstract data types).
We need to generate complete documentation for newcomers.
Extra effort in documenting and making source code maintainable pays
off later.
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Thank your for your attention
Questions?
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