Práctica 5. Ascenso de un cohete

Objetivo: practicar con la instrucción condicional simple

Descripción: Crear una clase llamada Cohete para calcular el movimiento vertical de un cohete pequeño en la tierra

- se lanza desde el suelo con velocidad inicial v_0 =0 y altura inicial x_0 =0
- cuando la fuerza de empuje supera el peso del cohete (esto ocurre en $t=t_0$) se inicia el ascenso
 - inicialmente el cohete es demasiado pesado y el empuje no es suficiente para moverlo
 - según se va quemando combustible el peso disminuye, hasta que el empuje lo supera
- cuando el combustible se termina (en $t=t_{max}$) se continúa el ascenso y luego se realiza el descenso hasta el suelo en caída libre

Notación

Usaremos unidades del sistema internacional (m, kg, s)

- c: masa de combustible inicial
- m_0 : suma de la masa del cohete y el combustible inicial
- t_0 : tiempo hasta que el cohete comienza a ascender
- t_{max} : tiempo hasta que se agota el combustible
- D: masa de combustible quemado por segundo
- u: velocidad de salida de los gases respecto al cohete
- x: desplazamiento del cohete
- *t*: tiempo
- v: velocidad del cohete
- a: aceleración del cohete
- g: gravedad= 9.8 m/s²
 - el cohete sube pocos kilómetros, por lo que la gravedad se supone constante

Ecuaciones del cohete

Tiempo hasta que se agota el combustible

$$t_{max} = \frac{c}{D} \tag{1}$$

Empuje mientras queda combustible ($t \le t_{max}$)

$$empuje = uD$$
 (2)

Masa del cohete mientras queda combustible $(t \le t_{max})$

$$m = m_0 - Dt (3)$$

Tiempo que debe transcurrir hasta que el empuje iguale al peso

$$uD = (m_0 - Dt_0)g \Rightarrow t_0 = \frac{m_0 - uD/g}{D}$$
 (4)

Ecuaciones del cohete (cont.)

Aceleración del cohete mientras queda combustible ($t_0 < t \le t_{max}$)

$$a = \frac{uD}{m} - g = u \frac{D}{m_0 - Dt} - g \tag{5}$$

Velocidad del cohete

Mientras el empuje es insuficiente ($t \le t_0$)

$$v = 0 \tag{6}$$

Mientras queda combustible ($t_0 < t \le t_{max}$)

$$v = v_0 - g(t - t_0) + u \ln \frac{m_0 - Dt_0}{m_0 - Dt}$$
 (7)

En t_{max} (al agotarse el combustible)

$$v_{max} = v(t_{max}) \tag{8}$$

Después de que se agote el combustible ($t > t_{max}$)

$$v = v_{max} - g(t - t_{max}) \tag{9}$$

Altura del cohete

Mientras el empuje es insuficiente ($t \le t_0$)

$$x = 0 \tag{10}$$

Antes de agotarse el combustible ($t_0 < t \le t_{max}$)

$$x = x_0 + v_0 t - \frac{1}{2}g(t - t_0)^2 + u(t - t_0)\ln(m_0 - Dt_0) +$$
(11)

$$\frac{u}{D}[(m_0 - Dt)\ln(m_0 - Dt) + D(t - t_0) - (m_0 - Dt_0)\ln(m_0 - Dt_0)]$$

Después de agotarse el combustible ($t > t_{max}$)

$$x = x(t_{max}) + v_{max}(t - t_{max}) - \frac{1}{2}g(t - t_{max})^2$$
 (12)

Ecuaciones del cohete (cont.)

Tiempo hasta alcanzar la altura máxima

$$t_{altmax} = t_{max} + \frac{v_{max}}{g} \tag{13}$$

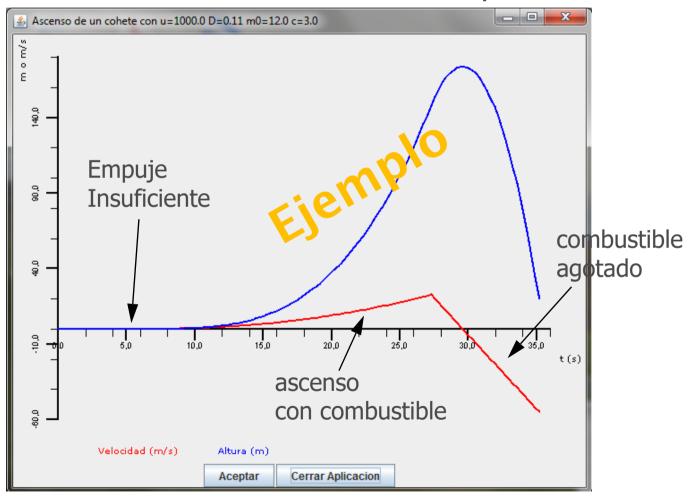
Altura máxima alcanzada

$$altmax = x(t_{altmax}) ag{14}$$

Fuente: http://www.sc.ehu.es/sbweb/fisica/dinamica/cohete3/cohete3.html

Diseño de la clase Cohete

Atributos


- constantes: *g*;
- variables: u, D, m_0 , c

Métodos

- constructor, al que se le pasan los valores iniciales de los atributos variables
- calcular t_0 con la ec. (4), aunque si fuese negativo se retornará 0.0
- calcular t_{max} con la ec. (1)
- calcular v_{max} con la ec. (8)
- calcular v, dado el tiempo (un argumento), con las ec. (6) (7) y (9)
- calcular x, dado el tiempo (un argumento), con las ec. (10) (11) y (12)
- calcular *altmax*, con las ec. (13) y (14)

Realización

- Escribir la clase Cohete en Java a partir del esqueleto que se da
- Probar el funcionamiento con el simulador que se ofrece

Realización (cont.)

- Crear además otra clase con un método main que sirva para probar los métodos de la clase Cohete y que haga:
 - crear un objeto de la clase Cohete con datos u, D, m_0 , c fijos:

```
- u=1000 m/s

- D= 0.11 kg/s

- m_0= 12 kg

- c= 3 kg
```

- calcular t_0 , t_{max} , v_{max} y altmax
- calcular $v(t_0/2)$, $v(t_{max}/2)$ y v(1.1* t_{max})
- calcular $x(t_0/2)$, $x(t_{max}/2)$, $x(t_{max})$ y $x(1.1*t_{max})$
- mostrar en pantalla los 11 resultados
- comprobar que los resultados son los esperados en el informe
- Modificar los datos del cohete usando los indicados en el informe y obtener los nuevos resultados para ese nuevo cohete

Parte avanzada

Modificar el main para:

- leer los atributos del cohete de teclado
- leer de teclado dos instantes de tiempo en que se calcularán las velocidades y alturas, en lugar de usar $t_{max}/2$ y $1.1*t_{max}$
- escribir los resultados en una ventana de la clase Escritura

Entregar:

Proyecto Bluej comprimido

Parte básica:

- Diagrama de la clase Cohete
- Código de la clase Cohete
- Captura de pantalla del simulador
- Código del programa principal
- Tabla con los datos utilizados para la prueba y los resultados obtenidos

Parte avanzada

- Código de la clase principal modificada
- Captura de pantalla del resultado de ejecutar el programa