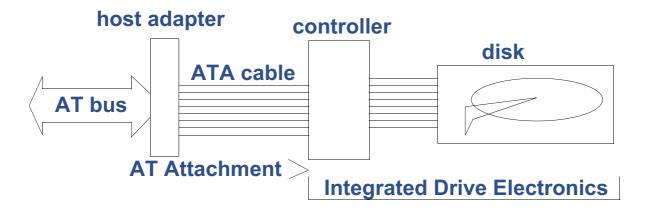
Periféricos Interfaces y Buses


- I. Arquitectura de E/S
- II. Programación de E/S
- III. Interfaces de E/S de datos
- IV. Dispositivos de E/S de datos
- V. Buses
- VI. Controladores e interfaces de dispositivos de almacenamiento Modelo de funcionamiento de los principales controladores e interfaces (IDE, ATA, ATAPI, SATA, SCSI). Modelo de programación de dispositivos con las interfaces descritas.
- VII. Sistemas de almacenamiento

GRUPO DE COMPUTADORES Y TIEMPO REAL BACULTAD DE CIENCIAS © Julio Medina, J. Javier Gutiérrez 25/ma/09

1

Elementos básicos de acceso a dispositivos de almacenamiento

La unificación de disco y controlador se debe a multiples razones: Ruido eléctrico, dificultad de evolución, eficiencia, consumo, etc.

Algunas definiciones

IDE: Integrated Drive Electronics (Intelligent DE)

- Combinación de disco y controlador (de cabezas cilindros etc.)
- Practicamente todos los discos actuales.
- Controladores más eficientes y software más sencillo.

Host interface adapter (usualmente llamada tarjeta controladora):

• Interfaz física de adaptación entre el bus ISA (o PCI) y la interfaz usada para transferir información al disco (ATA, SATA, SCSI, etc.) actualmente suelen estar integradas en la placa base.

GRUPO DE COMPUTADORES Y TIEMPO REAL FACULTAD DE CIENCIAS

© Julio Medina, J. Javier Gutiérrez 25/ma/09 1

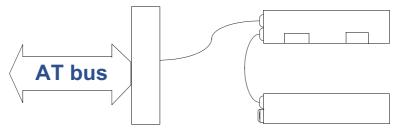
Algunas definiciones (cont)

ATA: AT Attachment (IBM AT-> AT:Advanced Technology)

 IDE Estándar para el IBM AT desarrollado por Control Data Corp.
 Western Digital y Compaq en 1986 y estandarizado desde 1989, usa un bus de 16 bits en paralelo para acceder a dos unidades.

SATA: Serial ATA

• Evolución del estandar ATA que emplea transferencia serial.


SCSI: Small Computer System Interface

 Standar para la comunicación con diferentes dispositivos, no solo de almacenamiento sino otros como scanners, plotters, etc. Soporta un mayor número de unidades y distancias más largas. SCSI

Se configuran como un multi bus en el que las unidades que quedan en los extremos deben tener terminadores de impedancia.

SCSI host adapter

Cada unidad tiene un identificador o dirección asignada de 0 a 7 y puede manejar hasta 8 unidades lógicas (LUN).

GRUPO DE COMPUTADORES Y TIEMPO REAL FACULTAD DE CIENCIAS

© Julio Medina, J. Javier Gutiérrez 25/ma/09

SCSI (cont)

Los SCSI ID0 e ID1 suelen estar asignados a discos duros y el ID7 está asignado al propio host adapter o a unidades de cinta.

El cable puede alcanzar un máximo de 6 metros y lleva 50 lineas.

8 para datos (más una de paridad), 9 de control y una para terminación del lazo. Cada una con su tierra.

La comunicación puede efectuarse entre las unidades sin intervención del host, pero solo dos de ellas pueden contactar a la vez.

El protocolo permite solicitar una transferencia y recibirla de forma diferida.

SCSI (cont)

En el PC los host adapters para SCSI requieren del sistema:

- Una IRQ
- I/O port address
- Un canal de DMA (excepto si es PCI)
- Opcionalmente una Boot ROM address (16Kb en los segmentos C000h o D000h)

GRUPO DE COMPUTADORES Y TIEMPO REAL FACULTAD DE CIENCIAS

© Julio Medina, J. Javier Gutiérrez 25/ma/09

Evolución del estándar ATA

ATA inicial surge para manejar unidades que incorporan controladores y discos que utilizaban el anterior estándar ST412/506 como interfaz entre ambos.

Características heredadas del modelo de programación anterior para el AT son:

No utiliza DMA sino instrucciones sobre un puerto I/O

Utiliza la interrupción 14 (IRQ14)

La BIOS incorpora rutinas para su utilización (f0000h)

Emplea un set de registros localizados en el llamado AT Task file

ATA-1 (1988 - 1999)

40/44 pines

Master/Slave por jumpers o Cable select

La geometría del disco se configura en la BIOS y se direccionan los sectores mediante la indicacion del cilindro, cabeza y sector(CHS). Se admite también el direccionamiento simple de sectores/ LBA (Logical Block Address)

$$LBA = (((CxHpC) + H)xSpT) + S - 1 \rightarrow CHS (0,0,1) = LBA (0)$$

C 16bits [0..65535] --> max 65536

H 4bits [0..15] --> max 16

S 8bits [1..255] --> max 256

maximo número de sectores 267'386,880 (136.9 Gb)

GRUPO DE COMPUTADORES Y TIEMPO REAL FACULTAD DE CIENCIAS


© Julio Medina, J. Javier Gutiérrez 25/ma/09

ATA-1 limitaciones

La interrupción software INT13h de la BIOS accepta 8.4Gb:,

C 10bits [0..1023] --> max 1024 H 4bits [0..255] --> max 256 S 8bits [1..63] --> max 63

AL combinar los máximos para la representación de C, H y S en ambas interfaces la capacidad queda limitada a 528MB (1024x16x63=1'032,192 sectores)

ATA-2 (1993 - 2001)

Tambien llamado como fast-ATA, fast-ATA-2, EIDE

Se extiende a otros dispositivos de almacenamiento (no solo HD)

Traducción estándard de CHS de la INT13h a ATA (8.4Gb)

Power Management

Dispositivos extraibles

PCMCIA (PC Card)

Comandos que retornan mayor información (PnP)

Transferencias más rápidas por DMA y puerto de E/S

GRUPO DE COMPUTADORES Y TIEMPO REAL FACULTAD DE CIENCIAS

© Julio Medina, J. Javier Gutiérrez 25/ma/09 11

ATA-3 (1995 - 2002)

SMART: Self Monitoring Analysis, and Reporting Technologies; añade soporte para la predicción de fallos de performance y corrección automática en la unidad (IBM).

LBA es obligatorio (antes era opcional)

ATA Security mode (password)

Recomendación de terminaciónes en el bus para aminorar problemas de ruido.

ATA/ATAPI-4 (1996 - vigente)

Llamado AT Attachment with Packet Interface Extension 4

- Soporte integral ATAPI, que unifica la utilización de CD-ROM, CD-RW, LS-120 SuperDisk floppy drives, Zip drives, tape drives.
- Ultra-DMA (UDMA) en modo 2 de transferencia hasta 33MBps (Ilamado UDMA/33 o Ultra-ATA/33)
- Soporte avanzado para administración de energía
- Hace opcional el uso de cables de 80 hilos (conector azul)
- Faculta la reserva de un área del disco para uso específico del software de recuperación.
- Soporte para Compact Flash Adapter (CFA)
- Soporte en la BIOS para drives de hasta 9.4ZB (zettabytes o billon de Gb) en la práctica ATA sigue limitado a 136.9GB

GRUPO DE COMPUTADORES Y TIEMPO REAL FACULTAD DE CIENCIAS

© Julio Medina, J. Javier Gutiérrez 25/ma/09 13

ATA/ATAPI-5 (1998 - vigente)

Ultra-DMA (UDMA) en Modo 4 de transferencia hasta 66MBps (Ilamado UDMA/66 o Ultra-ATA/66)

Cable de 80 hilos obligatorio para usar UDMA/66.

Detección automática de cables de 40 u 80 hilos.

Modos más rápidos de UDMA/33 se habilitan sólo si se detecta que el cable es de 80 hilos

Las transferencias UDMA incorporan un CRC para verificación de errores.

ATA/ATAPI-6 (2000 - vigente)

Ultra-DMA (UDMA) en Modo 5 de transferencia hasta 100MBps (Ilamado UDMA/100, Ultra-ATA/100 o ATA/100)

La cuenta de sectores por comando pasa de usar 8 a 16 bits, para transferir ficheros largos más eficientemente.

El modo LBA puede pasar de usar 2²⁸ a 2⁴⁸ sectores. (48-bit LBA) Que eleva de 137Gb a 144.12Pb (millones de Gb).

Modo de direccionamiento CHS es obsoleto. Se emplea 28-bit o 48-bit LBA

GRUPO DE COMPUTADORES Y TIEMPO REAL FACULTAD DE CIENCIAS

© Julio Medina, J. Javier Gutiérrez 25/ma/09

15

ATA/ATAPI-7 (2001 - vigente)

Ultra-DMA (UDMA) en Modo 6 de transferencia hasta 330MBps (Ilamado UDMA/133, Ultra-ATA/133 o ATA/133)

Soporte para tener sectores físicos más largos y varios sectores lógicos en uno físico, incluyendo un campo para su extracción.

Soporte para tener sectores lógicos de mayor tamaño. (520 o 528 en lugar de 512), aunque su uso es incompatible hacia atrás.

Se añade Serial ATA.

Se separa en tres partes, La decripción de sus comandos y el set de registros, la especificación para transferencia paralela y la especificación para transferencia serial.

Pines del conector ATA paralelo de 40 hilos

Signal Name	Pin	Pin	Signal Name
-RESET	1	2	GROUND
Data Bit 7	3	4	Data Bit 8
Data Bit 6	5	6	Data Bit 9
Data Bit 5	7	8	Data Bit 10
Data Bit 4	9	10	Data Bit 11
Data Bit 3	11	12	Data Bit 12
Data Bit 2	13	14	Data Bit 13
Data Bit 1	15	16	Data Bit 14
Data Bit 0	17	18	Data Bit 15
GROUND	19	20	KEY (pin missing)
DRQ 3	21	22	GROUND
-low	23	24	GROUND
-IOR	25	26	GROUND
I/O CH RDY	27	28	CSEL:SPSYNC1
-DACK 3	29	30	GROUND
IRQ 14	31	32	Reserved ²
Address Bit 1	33	34	-PDIAG
Address Bit 0	35	36	Address Bit 2
-CS1FX	37	38	-CS3FX
-DA/SP	39	40	GROUND
+5V (Logic)	41	42	+5V (Motor)
GROUND	43	44	Reserved

^{1.} Pin 28 is usually cable select, but some older drives could use it for spindle synchronization between multiple drives.

Note that "-" preceding a signal name (such as with -RESET) indicates the signal is "active low."

Mueller S.

GRUPO DE COMPUTADORES Y TIEMPO REAL FACULTAD DE CIENCIAS

© Julio Medina, J. Javier Gutiérrez 25/ma/09

17

SATA

- Conexion serial
- Velocidades: SATA-150 (300 ó 600), 150 (300 ó 600) MBytes/s
- · Sólo un drive por puerto.
- La interfaz software es única para ATA y SATA (emula ATA-5)
- Codifica los bits (con 8B/10B) de modo que nunca hay más de cuatro ceros o unos consecutivos

Signal Pin	Signal	Description
S1	Gnd	First mate
S2	A+	Host Transmit +
53	A-	Host Transmit -
S4	Gnd	First mate
S5	B-	Host Receive -
S6	B+	Host Receive +
S7	Gnd	First mate

Mueller S.

^{2.} Pin 32 was defined as -IOCS16 in ATA-2 but is no longer used.

AT Task File

Se constituye en dos grupos de registros con base en las direcciones 1f0h y 3f0h del puerto de entrada:

Registro	Dirección	Ancho	Modo
Data register	1f0h	16	R/W
error register	1f1h	8	R
precompensation	1f1h	8	W
sector count	1f2h	8	R/W
sector number	1f3h	8	R/W
cylinder LSB	1f4h	8	R/W
cylinder MSB	1f5h	8	R/W
drive/head	1f6h	8	R/W
status register	1f7h	8	R
command register	1f7h	8	W
alternate status register digital output register drive address	3f6h 3f6h 3f7h	8 8 8	R W R

GRUPO DE COMPUTADORES Y TIEMPO REAL FACULTAD DE CIENCIAS

© Julio Medina, J. Javier Gutiérrez 25/ma/09

19

AT Task File (cont) Error Register

BBK: 1=sector marked as bad by host

UNC: 1=uncorrectable data error

NID: 1=ID mark not found

ABT: command abort

1=command aborted

NTO: 1=track 0 not found

NDM: 1=data address mark not found

x: unused

0=no error

O=no or correctable data error

()=no error

0=command executed

0=no error

0=no error

Enhanced IDE only:

MC: 1=medium changed 0=medium not changed

MCR: 1=medium change required 0=no medium change required

- Messmer H-P.

AT Task File (cont) Drive/head Register

DRV: drive

1=slave 0=master

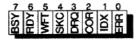
HD₃-HD₀: head number (binary)

0000=head 0 0001=head 1 0010=head 2 ... 1111=head 15

Enhanced IDE only:

L: 1=LBA mode 0=CHS mode

Messmer H-P.


GRUPO DE COMPUTADORES Y TIEMPO REAL FACULTAD DE CIENCIAS

© Julio Medina, J. Javier Gutiérrez 25/ma/09

21

AT Task File (cont) Status Register

BSY: busy

1=drive is busy

O≖drive not busy

RDY: ready

1=drive is ready

0=drive not ready

WFT: write fault

· ·

1=write fault

O=no write fault

SKC: head positioning (seek) . 1=complete

O=in progress

DRQ: data

o ... p. og. c.

1=can be transferred

0=no data access possible

CORR: correctable data error

O=not data error

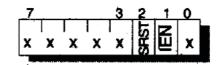
1=data error

ror U=not data erro

IDX: disk index

1=disk index has just passed 0=disk index did not pass

ERR: error


1=error register contains error information

O=error register does not contain error information

Messmer H-P.

AT Task File (cont) Digital Output Register

SRST: system reset

IEN: interrupt enable

Messmer H-P.

GRUPO DE COMPUTADORES Y TIEMPO REAL FACULTAD DE CIENCIAS

© Julio Medina, J. Javier Gutiérrez 25/ma/09

23

AT Task File (cont) Commands

Command	SC	SN	CY	DR	HD
calibrate drive				XX	
read sector	XX	XX	XX	XX /	XX
write sector	XX	XX	xx	XX.	XX
verify sector	XX	XX	XX	XX	XX
format track			XX	XX	₽ XX
seek head		:	xx	. XX	XX
diagnostics					
set drive parameters	XX			XX	

SC: sector count SN: sector number CY: cylinder MSB and LSB

DR: drive (in register drive/head) HD: head (in register drive/head)

xx: parameter necessary for corresponding command

Messmer H-P.

AT Task File (cont) Write sector Command

AT Task Fi	le				В	it			
Register		7	6	5	4	3	2	1	0
Command	(1f7h)	0	0	1	1	0	0	L	R
Sector Count	(1f2h)		Nun	nber	of Se	ctors	to V	Vrite	
Sector Number	(1f3h)	S ₇	Se	S ₅	S ₄	S ₃	S2	S ₁	So
Cylinder LSB	(1f4h)	C ₇	Ç ₆	C ₅	C ₄	C ₃	C_2	Cı	Co
Cylinder MSB	(1f5h)	0	0	0	0	0	0	Ca	C ₈
Drive/Head	(1f6h)	1	0	1	DRV	HD_3	HD ₂	HD_1	HD_0

L: long

R: retry

1=carry out retry procedure 0=no retry procedure sector count: number of sectors to be written onto disk

S7-S0: sector number (start sector)
C9-C0: cylinder number (start cylinder)

DRV: drive

1=drive 1 0=drive 0

HD₃-HD₀: head

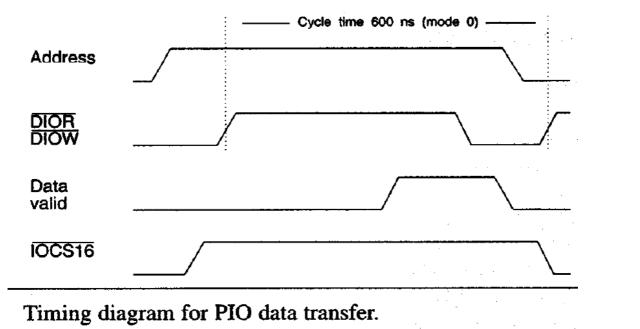
Messmer H-P.

GRUPO DE COMPUTADORES Y TIEMPO REAL FACULTAD DE CIENCIAS

© Julio Medina, J. Javier Gutiérrez 25/ma/09

25

DMA modes


Mode	0	1	2	3	4
PIO cycle time Data rate	600 ns 3.3 MB/sec	383 ns 5.2 MB/sec	240 ns 8,3 MB/sec	180 ns 11.1 MB/sec	120 ns 16.6 MB/sec
Single-DMA cycle Data rate	960 ns 2 MB/sec	480 ns 4.1 MB/sec	240 ns 8.3 MB/sec		
Multi-DMA cycle Data rate	480 ns 4.1 MB/sec	150 ns 13.3 MB/sec	120 ns 16.6 MB/sec		

The data rates are taken from the article 'Quellen und Senken' [Sources and sinks] by Andreas Stiller, c'i (August 1995). The gray-shaded boxes are already defined in ATA-1.

Schmidt F.

PIO Timming

Schmidt F.

GRUPO DE COMPUTADORES Y TIEMPO REAL FACULTAD DE CIENCIAS

© Julio Medina, J. Javier Gutiérrez 25/ma/09