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This document describes the analysis of a slow system suffering from a process with a memory 
leakage. Such process regularly requests for more dynamic memory with the subroutine malloc, 
while the programmer has “forgotten” to free the requested memory again. In this way the process 
grows virtually as well as physically. Mainly by the physical growth (the process' resident set size 
increases), the process inflates like a balloon and pushes other processes out of main memory. Instead 
of a healthy system where processes reach a proper balance in their memory consumption, the total 
system performance might degrade just by one process that leaks memory. 

Notice that the Linux kernel does not limit the physical memory consumption of processes. Every 
process, either running under root identity or non-root identity, can grow unlimited. In the last section 
of this case study, some suggestions will be given to decrease the influence of leaking processes on 
your overall system performance.

In order to be able to interpret the figures produced by atop, basic knowledge of Linux memory 
management is required. The next sections describe the utilization of physical memory as well as the 
impact of virtual memory before focussing on the details of the case itself.

Introduction to physical memory

The physical memory (RAM) of your system is subdivided in equally-sized portions, called memory 
pages. The size of a memory page depends on the CPU-architecture and the settings issued by the 
operating system. Let's assume for this article that the size of a memory page is 4 KiB.

At the moment that the system is booted, the compressed kernel image – known as the file 
/boot/vmlinuz-.... – is loaded and decompressed in memory. This static part of the kernel is 
loaded somewhere at the beginning of the RAM memory.

The running kernel requires however more space, e.g. for the administration of processes, open files, 
network sockets, ... but also to load dynamic loadable modules. Therefore, the kernel dynamically 
allocates memory using so-called “slab caches”, in short slab. When this dynamically allocated kernel 
memory is not needed any more (removal of process administration when a process exits, unloading a 
loaded module, ....), the kernel might free this memory. This means that the slab space will shrink 
again. Notice that all pages in use by the kernel are memory resident and will never be swapped.



Apart from the kernel, also processes require physical pages for their text (code), static data and stack. 
The physical space consumed by a process is called “Resident Set Size”, in short RSS. How a page 
becomes part of the RSS will be discussed in the next section.

The remaining part of the physical memory – after the kernel and processes have taken their share – is 
mainly used for the page cache. The page cache keeps as much data as possible from the disks 
(filesystems) in memory in order to improve the access speed to disk data. The page cache consists of 
two parts: the part where the data blocks of files are stored and the part where the metadata blocks 
(superblocks, inodes, bitmaps, ...) of filesystems are stored. The latter part is called the “buffer cache”. 
Most tools (like free, top, atop) show two separate values for these parts, resp. “cached” and 
“buffer”. The sum of these two values is the total size of the page cache. 

The size of the page cache varies. If there is plenty free memory, the page cache will grow and if there 
is a lack of memory, the page cache will shrink again. 

Finally, the kernel keeps a pool of free pages to be able to fullfill a request for a new page and deliver it 
from stock straight away. When the number of free pages drops below a particular threshold, pages that 
are currently occupied will be freed and added to the free page pool. Such page can be retrieved from a 
process (current page contents might have to be swapped to swap space first) or it can be stolen from 
the page cache (current page contents might have to be flushed to the filesystem first). In the first case, 
the RSS of the concerning process shrinks. In the second case, the size of the page cache shrinks.

Even the slab might shrink in case of a lack of free pages. Also the slab contains data that is just meant 
to speed up certain mechanisms, but can be shrunk in case of memory pressure. An example is the 
incore inode cache that contains inodes of files that are currently open, but also contains inodes of files 
that have recently been open but are currently closed. That last category is kept in memory, just in case 
such file will be opened again in the near future (saves another inode retrieval from disk). If needed 
however, the incore inodes of closed files can be removed. Another example is the directory name 
cache (dentry cache) that holds the names of recently accessed files and directories. The dentry cache is 
meant to speed up the pathname resolution by avoiding accesses to disk. In case of memory pressure, 
the least-recently accessed names might be removed to shrink the slab.



In the output of atop, the sizes of the memory components that have just been discussed can be found:

In the line labeled MEM, the size of the RAM memory is shown (tot), the memory that is currently 
free (free), the size of the page cache (cache+buff) and the size of the dynamically allocated 
kernel memory (slab).

The RSS of the processes can be found in the process list (the lower part of screen):

The memory details (subcommand 'm') show the current RSS per process in the column RSIZE and (as 
a percentage of the total memory installed) in the column MEM. The physical growth of the process 
during the last interval is shown in the column RGROW. 

Introduction to virtual memory

When a new program is activated, the kernel constructs a virtual addess space for the new process. This 
virtual address space describes all memory that the process could possibly use. For a starting process, 

the size of the virtual space is mainly determined by the text (T) and 
data (D) pages in the executable file, with a few additional pages for 
the process' stack.

Notice that the process does not consume any physical memory yet 
during its early startup stage.

The illustration shows an executable file with 32KiB (8 pages) of text 
and 32KiB (8 pages) of static data. The kernel has just built a virtual 
address space for the pages of the executable file and 4 additional 
pages (e.g. for stack).



After the virtual address space has been built, the kernel fills the program counter register of the CPU 
with the address of the first instruction to be executed. The CPU tries to fetch this instruction, but 

notices that the concerning text page is not in memory. Therefore the 
CPU generates a fault (trap). The fault handling routine of the kernel 
will load the requested text page from the executable file and restarts 
the process at the some point. Now the CPU is able to fetch the first 
instruction and executes it. When a branch is made to an instruction 
that lies in another text page, that page will be loaded via fault 
handling as well. The kernel will load a data page as soon as a 
reference is made to a static variable. In this way, any page can be 
physically loaded into memory at its first reference. Pages that are not 
referenced at all, will not be loaded into memory.

The illustration shows that the process has a virtual size of 80KiB (20 
pages) and a physical size (RSS) of 16KiB (4 pages). Obviously, the 
physical size is always a subset of the virtual size and can never be 
larger than that.

Suppose that the process allocates memory dynamically (with the 
subroutine malloc), the requested space will initially only extend 
the process' virtual address space. Only when the proces really refers 
to a page in the dynamic area, that page is physically created and 
filled with binary zeroes. 

The illustration shows that the first malloc'ed area has a vrtual size of 
48KiB (12 pages) while only 16KiB (4 pages) are physically created 
by a reference. Also the pages in the second and third malloc'ed space 
have not all been referenced.

In the process list shown by atop, information can be found about the virtual address space:

The memory details (subcommand 'm') show the current virtual size per process in the column VSIZE. 
The virtual growth of a process during the last interval is shown in the column VGROW. 

For process simpress.bin with pid 3456 a virtual growth of 1628KiB is shown (probably by 
issueing a malloc) while the resident growth is 1596KiB. Process chrome with pid 29272 has not 
been grown virtually (0KiB) but has referenced pages (60 pages of 4KiB) during the last interval that 
have been allocated virtually during earlier intervals. Process Xorg with pid 1530 has only been grown 
virtually (6116KiB) but has not referenced any of the new pages (yet).

Process firefox with pid 4680 has freed malloc'ed space with a virtual size of 272KiB. Apparently, 
this implies the release of 272KiB resident space.



Case study: A quiet system

The first atop snapshot was taken when a program that leaks memory has just been started, called 
lekker (Dutch for “leaker”). In this snapshot we see a system with net 3.8GiB of physical memory of 
which 186MiB is free and more than 1GiB in the page cache (MEM line: cache + buff). The 
kernel has dynamically allocated 273MiB slab. Thus, some 2.3GiB is in use by application processes. 
Swap space (8GiB) is almost unused (so far...). We can see that the lekker process has grown 
156Mib (virtual) during the last interval which was also made resident by really referencing the 
allocated space. For now, there is no reason to be worried. 

Please take notice of the six upload processes. They have allocated 256MiB each (virtual and 
resident). We can also see multiple chrome processes that may have a large virtual size, but only a 
small portion of that is resident: the cumulated virtual size is 4.1GiB (1+1+0.6+1.5 GiB) of which 
229MiB (103+52+44+30 MiB) is resident. The process simpress.bin has made less than 10% of 
its virtual footprint (1.1GiB) resident (91MiB). Also firefox has a relatively small portion of its 
virtual footprint resident. A lot of these virtual sizes will be shared, not only for the same executable 
file (4 chrome processes share at least the same code), but also for shared library code used by all 
processes.  Till now the system has “promised” 3.4GiB of virtual memory (MEM line, vmcom) of the 
total limit 9.9GiB (vmlim, which is the size of swap space plus half of the physical memory). 



Case study: It's getting a bit busy...

One snapshot of twenty seconds later, lekker has grown another 150MiB (virtual and resident). For a 
large part that could be claimed from the free space, but not entirely.  The number of free pages in stock 
is getting very low, so the kernel tries to free memory somewhere else. We can see that the first victims 
are the page cache and the slab. They both have to shrink. 

The MEM line is displayed in cyan because the amount of memory that can quickly be claimed is small 
(free plus the page cache). The processes are not yet in the danger zone because no pages are swapped 
out (PAG line, swout). Better yet, firefox has physically referenced another 892KiB (that is a 
small amount compared to the 156MiB that lekker got). 

We can see that chrome has shrunk by 24KiB (6 pages). We later found out that this was caused by 
malloc'ed memory pages that were freed, followed by a new malloc of 6 pages without referencing the 
pages again. Hence the virtual and resident size at first shrunk by 6 pages, after which only the virtual 
size grew by 6 pages. After all, the resident size shrunk without a change of the virtual size. 



Case study: The kernel gets worried....

Four snapshots of 20 seconds later, we see that lekker has an unsatisfiable hunger: it has grown more 
than 600MiB (virtual and resident) since the previous screen shot, which is about 150MiB per 20 
seconds. 

The page cache has been shrunk as well as the slab (e.g. in-core inodes and directory entries). Processes 
weren't spared either. They didn't shrink virtually, but some of their resident pages were taken away by 
the kernel (negative RGROW). Because the worried (but not yet desparate) kernel is looking hard for 
memory to free, more and more pages are checked by the page scanner: 30712 pages were verified to 
see if they are candidate to be removed from memory (PAG line, scan). If a page has to be removed 
from memory that was modified, that page has to be saved to the swap space. In this snapshot, 322 
pages were written to the swap disk (PAG line, swout). This resulted in 322 writes to the swap space 
logical volume (vg00-lvswap) that were combined to about 60 writes to the physical disk (sda). 
Because so many pages were swapped out in a short time, the PAG line is displayed in red. 

However, processes don't sit still and some of the pages that were swapped out will be referenced 
again. These pages are read again which happened 91 times (PAG line, swin). Fortunately atop itself 
makes all its pages resident at startup and locks them in memory, thus preventing them to be swapped 
out and making the measurements unreliable. 



Case study: The kernel gets desparate as well as the users...

The memory-leaking process lekker cannot be stopped. We fast-forward 5 minutes:

By now, lekker has grown to a virtual size of 2.8GiB of which 2GiB is resident (more than 50% of 
the physical memory of the system). In the past 20 seconds, lekker has tried to get hold of 128MiB 
more virtual memory but has only been able to make 34MiB resident. We know from the past that 
lekker tries to make all its virtual memory resident as soon as it can, so we can conclude that the 
kernel is very busy swapping out pages. The page cache has already been minimized, as well as the 
inode cache and directory entry cache (part of the slab).  Obviously the processes will also have to 
“donate” physical memory. One of the upload processes (PID 30926) is even donating 19MiB. We 
can see for some of the upload processes that they had to give back quite a lot more physical memory 
(RSIZE). They had 6 times 256MiB, of which they now have only two thirds. 

The system is swapping out heavily (32135 pages in the last 20 seconds) but is also swapping in (8440 
pages). Because of this, the PAG line is displayed in red. The disk is very busy (the DSK as well as 
LVM lines are red). The average service times of requests for the logical volumes that are not related to 
swapping (lvhome and lvusr) are getting longer because the requests to those areas are swamped by 
requests to swap space (lvswap). Although a relatively small number of requests are related to lvusr 
and lvhome, these logical volumes are busy respectively 75% and 92% of the time. The system feels 
extremely slow now. Time to get rid of the leaking process.....



Case study: Relief...

Five minutes later, the big spender lekker has finished and thus not using memory any more:

However, the effect of lekker as a memory hog can be noticed for a long time. We can see that the 
upload processes are slowly referencing their swapped-out pages resulting in a resident growth again. 
Because there is an ocean of free space (1.8 GiB), nothing is swapped out any more and hardly any 
scanning (PAG line, scan). 

We see a lot of major page faults (MAJFLT) for processes: references to virtual pages that are retrieved 
from disk. Either they were swapped out and now have to be swapped in, or they are read from the 
executable file. The minor page faults (MINFLT) are references to virtual pages that can be made 
resident without loading the page from disk: pages that need to be filled with zeroes (e.g. for malloc's) 
or pages that were “accidentally” still available in the free page pool. 

The disk is still very busy retrieving the virtual pages that are referenced again and need to be swapped 
in (swin is 7384 which corresponds to read for logical volume lvswap). Therefore the DSK and 
some LVM lines are shown in red. The physical disk sda is mainly busy due to the requests of logical 
volume lvswap. However this also slows down the requests issued for the other logical volumes. One 
request to lvtmp even takes 738ms! 



Case study: Life's almost good again...

More than seven minutes later, we can see that the system is almost tranquil again:

There is far less disk I/O and certainly not all disk I/O is related to swapping any more. Processes (like 
upload) still do not have all their resident memory back, because they simply haven't touched all of 
their virtual pages since the “storm” has passed. Probably many of these pages have been used during 
their initialization phase and will not even be referenced any more. As such a small brease might help 
to clean up a dusty memory, however a stormy leaker as lekker can better be avoided..... 



Possible solutions for memory leakage

From the case study, it is clear that only one misbehaving process can cause a heavy performance 
degradation for the entire system. The most obvious solution is to solve the memory leakage in the 
guilty program and take care that every malloc'ed area is sooner or later freed again. However, in 
practice this might not be a trivial task since the leaking program will often be part of a third-party 
application.

Suppose that a real solution is not possible (for the time being), it should be possible to avoid that the 
leaking process is bothering other processes. Preferably it should only harm its own performance by 
limiting the resident memory that the leaking process is allowed to consume. So not allowing the 
balloon to expand unlimited (pushing out the others), but putting a bowl around it redirecting the 
superfluous expansions outside the box....

The good news is: there is a standard ulimit value to limit the resident memory of a process.

$ ulimit -a 
....
max memory size         (kbytes, -m) unlimited 

The default value is “unlimited”. The command ulimit can be used to set a limit on the resident 
memory consumption of the shell and the processes started by this shell:

$ ulimit -m 409600
$ lekker &

The bad news however is: this method only works with kernel version 2.4, but not any more with 
kernel version 2.6 (dummy value).

But there is other good news (without related bad news this time):
In the current 2.6 kernels a new mechanism is introduced called container groups (cgroups). Via 
cgroups it is possible to partition a set of processes (threads) and specify certain resource limits for 
such partition (container). A cgroup can be created for all kind of resources, also for memory. It is 
beyond the scope of this document to go into detail about cgroups, but a small example can already 
illustrate the power of this mechanism.



Cgroups are implemented via a filesystem module, so first of all the virtual cgroup filesystem (with 
option “memory”) should be mounted to an arbitrary directory. This mount has to be done only once 
after boot, so it's better to specify it in your /etc/fstab file:

 # mkdir /cgroups/memo
 # mount -t cgroup -o memory none /cgroups/memo 
 
To define a new memory cgroup for the leaking process(es):

1. Create a subdirectory below the mount point of the virtual cgroup filesystem:

  # mkdir /cgroups/memo/leakers

At the moment that you create a subdirectory, it is magically filled with all kind of pseudo files 
and subdirectories that can be used to control the properties of this cgroup.

2. One of the “files” in the newly created subdirectory is called memory.limit_in_bytes 
and can be used to set the total memory limit for all processes that will run in this cgroup:

  # echo 420M > /cgroup/memo/leakers/memory.limit_in_bytes

3. Another “file” in the newly created directory is called tasks and can be used to specify the 
id's of the processes/threads that must be part of the cgroup. If you assign a process to a cgroup, 
also its descendents (started from then on) will be part of that cgroup. Suppose that the leaking 
process lekker runs with PID 2627, it can be assigned to the cgroup leakers as follows:

  # echo 2627 > /cgroup/memo/leakers/tasks

Now the leaking process can not use more resident memory than 420MiB. When it runs, atop might 
show the following output:

The line labeled MEM shows that 1.9GiB memory is free. On the other hand, the line labeled PAG 
shows that a lot of pages have been swapped out.  
The process lekker has already grown to 3.6GiB virtual memory (VSIZE), but it only uses 374MiB 
resident memory (RSIZE). During the last sample, the process has even grown 132MiB virtually 
(VGROW), but it has shrunk 26MiB physically (RGROW). And what's more important, the other 
processes are not harmed any more by the leaking process. Their resident growth is not negative.
The leakage is not fixed, though under control...
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