
Mast2 Meta-model specification 31 de julio de 2015

Modeling and Analysis Suite for Real Time Applications
(MAST 2.0.0)

MAST Metamodel

By : César Cuevas Cuesta {cuevasce@unican.es]
 José María Drake {drakej@unican.es]
 Michael González Harbour {mgh@unican.es]
 José Javier Gutiérrez {gutierjj@unican.es]
 Patricia López Martínez {lopezpa@unican.es]
 Julio Luis Medina {medinajl@unican.es]
 José Carlos Palencia {palencij@unican.es]

Copyright 2000-2015 Universidad de Cantabria, SPAIN

Universidad de Cantabria 1

Mast2 Meta-model specification 31 de julio de 2015

Contents

1 MAST2 meta-model .. 5

2 MAST2 primitive types .. 6

3 MAST2 core classes ... 9

4 MAST2 model elements .. 13

4.1 PROCESSING RESOURCES ... 13

4.1.1 COMPUTING RESOURCES ... 14

4.1.2 NETWORKS .. 16

4.1.3 NETWORK SWITCHES AND NETWORK ROUTERS .. 25

4.2 TIMERS AND SYNCHRONIZATION OBJECTS .. 33

4.3 SCHEDULERS ... 37

4.3.1 SCHEDULING POLICIES .. 39

4.4 SCHEDULABLE RESOURCES .. 45

4.4.1 SCHEDULING PARAMETERS .. 49

4.4.2 SYNCHRONIZATION PARAMETERS .. 64

4.5 MUTUAL EXCLUSION RESOURCES .. 67

4.6 OPERATIONS ... 69

4.6.1 Overriden scheduling parameters .. 73

4.7 END-TO-END FLOWS .. 75

4.7.1 WORKLOAD EVENTS.. 79

4.7.2 OBSERVERS ... 82

4.7.3 STEP EVENT HANDLER... 88

4.7.4 TIMED EVENT HANDLERS .. 89

4.7.5 FLOW CONTROL EVENT HANDLERS .. 91

4.7.6 MESSAGE EVENT HANDLERS ... 95

Universidad de Cantabria 2

Mast2 Meta-model specification 31 de julio de 2015

Index of diagrams

Figure 1 – Primitive types defined in MAST2 .. 6
Figure 2 – The core classes in the MAST2 meta-model .. 9
Figure 3 – Top subclasses of Model_Element .. 13
Figure 4 – Hierarchy of processing resources ... 13
Figure 5 – Hierarchy of computing resources ... 14
Figure 6 – Hierarchy of networks .. 16
Figure 7 – Hierarchy of drivers .. 21
Figure 8 – The RTEP_Packet_Driver class ... 23
Figure 9 – Hierarchy of switches and routers ... 25
Figure 10 – The Clock_Synchronization_Object class ... 33
Figure 11 – Hierarchy of timers .. 34
Figure 12 – Hierarchy of schedulers ... 37
Figure 13 – Hierarchy of scheduling policies .. 39
Figure 14 – Hierarchy of schedulable resources ... 45
Figure 15 – Hierarchy of scheduling parameters .. 49
Figure 16 – Hierarchy of priority-based scheduling parameters .. 50
Figure 17 – Hierarchy of EDF scheduling parameters ... 55
Figure 18- Hierarchy of resource reservation params .. 56
Figure 19 – Hierarchy of timetable-driven scheduling parameters .. 63
Figure 20 – AFDX scheduling parameters ... 64
Figure 21 – Hierarchy of synchronization parameters ... 64
Figure 22 – Hierarchy of mutual exclusion resources .. 67
Figure 23 – Hierarchy of operations ... 69
Figure 24 – Hierarchy of overriden scheduling parameters ... 73
Figure 25 – End-to-end flow transaction model ... 75
Figure 26 – Hierarchy of workload events .. 79
Figure 27 – Hierarchy of observers ... 82
Figure 28 – The Step event handler .. 88
Figure 29 – The timed event handlers (Delay and Offset) .. 89
Figure 30 – The flow control event handlers .. 91
Figure 31 – The message flow event handlers ... 95

Universidad de Cantabria 3

Mast2 Meta-model specification 31 de julio de 2015

Universidad de Cantabria 4

Mast2 Meta-model specification 31 de julio de 2015

1 MAST2 meta-model
This document constitutes a readable version of the MAST 2.0.0 meta-model, formulated through the
Ecore meta-modeling language.

MAST defines a model to describe the timing behaviour of real-time systems designed to be analyzable
via schedulability analysis techniques. MAST also provides an open-source set of tools to perform
schedulability analysis or other timing analysis, with the goal of assessing whether the system will be
able to meet its timing requirements, and, via sensitivity analysis, how far or close is the system from
meeting its timing requirements. Tools are also provided to help the designer in the assignment of
scheduling parameters. By having an explicit model of the system and automatic analysis tools it is
also possible to perform design space exploration. A discrete event simulator is also provided to obtain
statistical performance information of the modeled system.

It is well known that testing cannot generally be used to make guarantees on the timing behaviour of
the system even after it is built, because there is usually no guarantee that the worst case was tested.
Schedulability analysis techniques are mathematical methods to obtain guarantees on the ability of
the system to meet all its timing requirements.

Although schedulability analysis techniques have evolved a lot and may be complex to apply, the MAST
toolset allows engineers developing real-time systems to apply advanced schedulability analysis
techniques without the need to study all their intricate details, and thus concentrating the efforts in
the design and tuning of the actual real-time system. This toolset can be used through all the phases
of the design cycle from requirements analysis through design, implementation, test, and integration.
Such an approach taken before the system is built increases the confidence that the system will be
able to meet its timing requirements and therefore the risk of generating a design that fails to meet
the timing requirements is reduced.

Universidad de Cantabria 5

Mast2 Meta-model specification 31 de julio de 2015

2 MAST2 primitive types

Figure 1 – Primitive types defined in MAST2

Primitive type Text

• Semantics. String of arbitrary characters, excluding the double quote character, and delimited
within double quotes.

Primitive type Identifier

• Semantics. String of characters following these rules. Identifiers or names have similar rules as the
Ada composite identifiers : they begin with a letter, followed by letters, digits, underscores (’_’) or
periods (’.’) They can be expressed with or without quotes. A quoted name can be the same as one
of the reserved words in MAST, which are the names of the non-<<abstract>> MAST model
elements.

Primitive type Pathname

• Semantics. String representing a pathname or the URL of a file.

Primitive type Date_Time

• Semantics. String representing a date and time (hours, minutes and seconds) in the extended ISO
8601 format with no time zone YYYY-MM-DDThh :mm :ss (e.g., 1997-07-16T19 :20 :30).

Primitive type Positive

• Semantics. Integer positive number (excluding zero).

Primitive type Natural

• Semantics. Integer number that is greater than or equal to zero.

Universidad de Cantabria 6

Mast2 Meta-model specification 31 de julio de 2015

Primitive type Bit_Count

• Semantics. Long non negative integer that represents the size of a message in bits of information.
It is converted to normalized execution time (i.e., transmission time) by dividing it by the
throughput, measured in bits per time unit.

Primitive type Priority

• Semantics. Natural integer of model-defined range that must be within [1 .. 215-1], defining the
scheduling priority of schedulable resources.

Primitive type Interrupt_Priority

• Semantics. Natural integer of model-defined range that must be within [1 .. 215-1], defining the
scheduling priority of interrupt service routines.

Primitive type Preemption_Level

• Semantics. Natural integer in the range [1 .. 215-1], defining the preemption level of schedulable
resources (threads) and mutual exclusion resources, used in the SRP protocol for mutually exclusive
access to shared resources.

Primitive type Throughput

• Semantics. Long non negative integer that represents the transmission bandwidth of a
communication network in bits per time unit in a network with speed factor one.

Primitive type Float

• Semantics. It represents any floating point number with the 64 bit IEEE representation.

Primitive type Time

• Semantics. Floating point number that represents a time interval in unspecified time units.

Primitive type Absolute_Time

• Semantics. Floating point number that represents an absolute time measured from and arbitrary
time origin, in unspecified time units (the same units used in Time).

Primitive type Normalized_Execution_Time

• Semantics. Floating point number that represents the amount of processing resource capacity that
is required for the execution of an operation. It is expressed as the execution time of an operation,
when it is executed by a normalized processing resource of speed factor equal to one. The real
execution time is obtained by dividing the normalized execution time by the processing resource’s
speed factor.

Universidad de Cantabria 7

Mast2 Meta-model specification 31 de julio de 2015

Primitive type Percentage

• Semantics. A floating point number representing a percentage in the range 0 to 100, and followed
by a “%” character.

Primitive type Extended_Percentage

• Semantics. A floating point number representing a percentage, and followed by a “%” character. In
some cases (slacks) the notation “> = num%” may be used to indicate that the actual result is
greater than the specified number. This case is usually reserved to analysis results that are
unbounded or too large to be calculated by practical means. It may represent also negative
percentages

Primitive type Assertion

• Semantics. It affirms (Yes) or negates (No) any characteristic.

Universidad de Cantabria 8

Mast2 Meta-model specification 31 de julio de 2015

3 MAST2 core classes

Figure 2 – The core classes in the MAST2 meta-model

<<abstract>> class Mast_Container

• Semantics. This class introduces the ability to declare Model_Element instances of the model. Each
Mast_Container element defines a new namespace, i.e. different Model_Element instances of the
same type declared in different containers can have the same name.

• Ancestors hierarchy: -

• Direct subclasses:

o Mast_Model
o Mast_Package

• Attributes: -

• References:

o <Aggregated> Element_List : Model_Element [1 .. *] → List of model elements declared as
aggregated in the container.

Class Mast_Model

• Semantics. It represents the overall MAST model of a real-time situation that a particular system
may have, and that needs to be analyzed. Global information about the real-time situation and the
underlying implementation is described in the Mast_Model object.

• Ancestors hierarchy: Mast_Container

• Direct subclasses: -

• Attributes:

o name : Identifier [1] → The name of the modeled real-time situation.

o Date : Date_Time [1] → The date in which the real-time situation model was created.

Universidad de Cantabria 9

Mast2 Meta-model specification 31 de julio de 2015

o System_PIP_Behavior : Overhead_Type [0 .. 1] = STRICT → The behavior of the underlying
implementation in regard to the priority inheritance protocol. It can be STRICT, when the
implementation strictly follows the original priority inheritance protocol, or POSIX, when the
implementation follows the POSIX standard, which allows a more relaxed implementation
that can lead to longer blocking times. The default value is STRICT. When a mutex is unlocked,
the POSIX specification allows the implementation to pass the lock to the highest priority
thread that is waiting to acquire the mutex. However, in the original priority inheritance
protocol the mutex must be unlocked and the lock cannot be passed directly to another
thread before the scheduler chooses the highest priority thread to be executed.

o Event_Queueing_Policy : Queueing_Policy_Type [0 .. 1] = FIFO → This attribute represents
the policy used to determine which request must be processed first when several pending
event instances are queued in the input of a step. Its complete meaning is explained in the
Merge element.

• References:

o <Aggregated> Element_List : Model_Element [1 .. *] → Inherited from Mast_Container.

Enumeration Overhead_Type

• Semantics. Enumerated type that describes the behaviour of the underlying implementation in
regard to the priority inheritance protocol. It can be STRICT or POSIX.

• Values:
o STRICT → The implementation strictly follows the original priority inheritance protocol.

o POSIX → The implementation follows the POSIX standard that allows a more relaxed
implementation that can lead to longer blocking times.

Enumeration Queueing_Policy_Type

• Semantics. It is the policy used to determine the request to be processed when several pending
event instances are queued in the input of the step. It can be FIFO or Priority (using the priority
value of the Schedulable Resource that generated the event instance).

• Values:
o FIFO → The request is chosen with a FIFO policy.

o PRIORITY → The request is chosen based on the priority of the Schedulable Resource that
generated the activation request.

Universidad de Cantabria 10

Mast2 Meta-model specification 31 de julio de 2015

<<abstract>> class Model_Element

• Semantics. It is the common ancestor of the high level classes in the Mast_Model.

• Ancestors hierarchy: -

• Direct subclasses:

o Mast_Package
o Processing_Resource
o Timer
o Clock_Synchronization_Object
o Scheduler
o Schedulable_Resource
o Operation
o Mutual_Exclusion_Resource
o End_To_End_Flow

• Attributes:
o name : Identifier [1] → The identifier of the model element.

• References:
o <Referenced> Container : Mast_Container [1] → The container in which the element is

declared.

Class Mast_Package

• Semantics. It is a container which is introduced to organize the elements of the model. A
Mast_Package element can be added to any container (Mast_Model or Mast_Package)

• Ancestors hierarchy: Mast_Container / Model_Element

• Direct subclasses: -

• Attributes:

o name : Identifier [1] → Inherited from Model_Element

• References:

o <Aggregated> Element_List : Model_Element [1 .. *] → Inherited from Mast_Container.

Universidad de Cantabria 11

Mast2 Meta-model specification 31 de julio de 2015

Universidad de Cantabria 12

Mast2 Meta-model specification 31 de julio de 2015

4 MAST2 model elements

Figure 3 – Top subclasses of Model_Element

4.1 PROCESSING RESOURCES

Figure 4 – Hierarchy of processing resources

<<abstract>> class Processing_Resource

• Semantics. It models the processing capacity of a hardware component that carries out some of
the modeled system activities, which are generally pieces of code to be executed, operations
carried out directly by hardware, or messages to be transferred.

• Ancestors hierarchy: Model_Element

• Direct subclasses:

o Computing_Resource
o Network
o Network_Switch

• Attributes:

o Speed_Factor : Float [1] = 1.0 → All execution times will be expressed in normalized units.
The real execution time is obtained by dividing the normalized execution time by the speed
factor. The default value is 1.0.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

Universidad de Cantabria 13

Mast2 Meta-model specification 31 de julio de 2015

o <Referenced> Synchronization_Source : Clock_Synchronization_Object [0 .. 1] → It
references the clock synchronization object used to synchronize the internal system timer of
the processing resource. This affects events and timing requirements referencing the system
timer, Timetable driven policies, Global EDF scheduling, etc. If this attribute is NULL the
processing resource is not synchronized with others. This attribute allows defining groups of
processing resources that have clock synchronization services. The default value is NULL.

o <Referenced> Scheduler : Primary_Scheduler [1] → The scheduler associated to the
processing resource in order to schedule the processing capacity it supplies.

4.1.1 COMPUTING RESOURCES

Figure 5 – Hierarchy of computing resources

<<abstract>> class Computing_Resource

• Semantics. It models a device capable of executing pieces of application code or operations carried
out directly by hardware.

• Ancestors hierarchy: Model_Element.Processing_Resource

• Direct subclasses:

o Regular_Processor

• Attributes:

o name : Identifier [1] → Inherited from Model_Element

o Speed_Factor : Float [1] = 1.0 → Inherited from Processing_Resource

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Referenced> Synchronization_Source : Clock_Synchronization_Object [0 .. 1] → Inherited
from Processing_Resource.

o <Referenced> Scheduler : Primary_Scheduler [1] → Inherited from Processing_Resource.

Universidad de Cantabria 14

Mast2 Meta-model specification 31 de julio de 2015

Class Regular_Processor

• Semantics. It represents a physical processor or a device; it contains attributes that describe the
overheads associated with the processor hardware modules, such as interrupt services, timers, etc.
A simplified interrupt model is assumed in which interrupts may be serviced at one or more priority
levels through a preemptive fixed priority hardware scheduler. The time needed to switch from
application code to interrupt code or back is modeled as an overhead called “ISR_Switch” and is
modeled by three normalized execution times that define the worst, average, or best case
overheads.

• Ancestors hierarchy: Model_Element.Processing_Resource.Computing_Resource

• Direct subclases: -

• Attributes:

o name : Identifier [1] → Inherited from Model_Element

o Speed_Factor : Float [1] = 1.0 → Inherited from Processing_Resource

o Worst_ISR_Switch : Normalized_Execution_Time [1] = 0.0 → Worst overhead. Maximum
execution time of an interrupt switch.

o Avg_ISR_Switch : Normalized_Execution_Time [1] = 0.0 → Average overhead. Average
execution time of an interrupt switch.

o Best_ISR_Switch : Normalized_Execution_Time [1] = 0.0 → Best overhead. Minimum
execution time of an interrupt switch.

o Min_Interrupt_Priority : Interrupt_Priority [1] = 0 → It defines the minimum valid priority
value for activities executed as interrupt service routines.

o Max_Interrupt_Priority : Interrupt_Priority [1] = MAXIMUM → It defines the maximum valid
priority value for activities executed as interrupt service routines.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Referenced> Synchronization_Source : Clock_Synchronization_Object [0 .. 1] → Inherited
from Processing_Resource.

o <Referenced> Scheduler : Primary_Scheduler [1] → Inherited from Processing_Resource.

o <Referenced> Timer_List : Timer [*] → List of references to the used hardware timers. They
influence the activation time of the timed activities that reference them and specify the
processor overhead implicitly introduced by the scheduler or the operating system to
implement its own time management services. An empty list indicates that the timers used
by the processing resource have a negligible overhead and perfect resolution. The default
value is an empty list.

o <Referenced> System_Timer : Timer [0 .. 1] → The system timer is used in the timetable-
driven and global EDF scheduling policies and it may also influence the activation time of the

Universidad de Cantabria 15

Mast2 Meta-model specification 31 de julio de 2015

timed activities that reference it. It also specifies the processor overhead implicitly
introduced by the scheduler or the operating system to implement its own time management
services. If not present, this indicates that an implicit system timer is used by the processor
and has a negligible overhead and perfect resolution.

4.1.2 NETWORKS

Figure 6 – Hierarchy of networks

<<abstract>> class Network

• Semantics. It models a communication system specialized in the transmission of messages among
processors or network switches.

• Ancestors hierarchy: Model_Element.Processing_Resource

• Direct subclasses:

o Packet_Based_Network

o AFDX_Link

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

o Speed_Factor : Float [1] = 1.0 → Inherited from Processing_Resource.

o Throughput : Throughput [1] = 0 → Normalized network bandwidth in bits per time unit. The
actual network throughput is affected by the Speed_Factor.

Universidad de Cantabria 16

Mast2 Meta-model specification 31 de julio de 2015

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Referenced> Synchronization_Source : Clock_Synchronization_Object [0 .. 1] → Inherited
from Processing_Resource.

o <Referenced> Scheduler : Primary_Scheduler [1] → Inherited from Processing_Resource.

o <Aggregated> Driver_List : Driver [*]→ A list of network drivers, which contain the processor
overhead model associated with the transmission of messages through the network. The
default is an empty list.

Enumeration Transmission_Type

• Semantics. It describes the capacity of a network for sending messages in different directions.

• Values:

o FULL_DUPLEX → The network allows communication in both directions.

o HALF_DUPLEX → The network allows communication in both directions, but only one at a
time.

o SIMPLEX → The network allows only one-way communication.

Class Packet_Based_Network

• Semantics. It models a network that uses some kind of real time protocol based on non-
preemptible packets for sending messages. There are networks that support priorities in their
standard protocols (i.e., the CAN bus), and other networks that need an additional protocol that
works on top of the standard ones (i.e., serial lines, ethernet).

• Ancestors hierarchy: Model_Element.Processing_Resource.Network

• Direct subclasses:

o RTEP_Network

• Attributes:

o name : Identifier [1] → Inherited from Model_Element

o Speed_Factor : Float [1] = 1.0 → Inherited from Processing_Resource

o Throughput : Throughput [1] = 0 → Inherited from Network

o Transmission_Kind : Transmission_Type [1] = HALF_DUPLEX → It describes the transmission
mode of the network.

o Max_Blocking : Time [1] = 0.0 → The maximum blocking that may be experienced before a
high priority message can be transmitted, caused by the non preemptability of message
packets, including both the application message and the protocol information sent with it. It
usually has a value equal to the maximum packet transmission time plus the transmission

Universidad de Cantabria 17

Mast2 Meta-model specification 31 de julio de 2015

time of the protocol information. Its default value is zero, indicating a negligible network
blocking.

o Max_Packet_Size : Bit_Count [1] = MAXIMUM → It describes the maximum amount of data
included in a packet, excluding any protocol information. The maximum size is used in the
calculation of the number of packets into which a large message is split, calculated as the
ceiling of the message size divided by the maximum packet size. This number is multiplied by
the packet overhead time of the scheduler to calculate the network overhead.

o Min_Packet_Size : Bit_Count [1] = MAXIMUM → It describes the minimum amount of data
included in a packet, excluding any protocol information. The Minimum size is used to
calculate the shortest period of the overheads associated with the transmission of each
packet, and thus has a strong impact on the overhead caused by the network drivers in the
processors using the network.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Referenced> Synchronization_Source : Clock_Synchronization_Object [0 .. 1] → Inherited
from Processing_Resource.

o <Referenced> Scheduler : Primary_Scheduler [1] → Inherited from Processing_Resource.

o <Aggregated> Driver_List : Driver [*] → Inherited from Network.

Class RTEP_Network

• Semantics. It represents a network that uses the RTEP protocol. This is a token-passing protocol
with prioritized messages, that uses a two-phase mechanism to send each information packet : in
first place there is a priority arbitration phase in which a token is rotated through each station or
processing node to determine which is the node with the highest priority message; in the second
phase that node is granted permission to transmit a packet with information.

• Ancestors hierarchy: Model_Element.Processing_Resource.Network.Packet_Based_Network.

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

o Speed_Factor : Float [1] = 1.0 → Inherited from Processing_Resource.

o Throughput : Throughput [1] = 0 → Inherited from Network

o Transmission_Kind : Transmission_Type [1] = HALF_DUPLEX → Inherited from
Packet_Based_Network. This value must be HALF_DUPLEX.

o Max_Blocking : Time [1] = 0.0 → Inherited from Packet_Based_Network. If not present, it
will be calculated automatically by the analysis tools.

o Max_Packet_Size : Bit_Count [1] = MAXIMUM → Inherited from Packet_Based_Network.

o Min_Packet_Size : Bit_Count [1] = MAXIMUM → Inherited from Packet_Based_Network.

Universidad de Cantabria 18

Mast2 Meta-model specification 31 de julio de 2015

o Number_Of_Stations : Positive [1] = MAXIMUM → The number of stations or processors
connected with the RTEP network. This attribute is used to determine the token rotation time
and several overhead values.

o Token_Delay : Time [1] = 0.0 → The configurable delay introduced during the handling of a
token to slow down the token transmission time in order to bound the overhead of each of
the processors connected to the RT-EP network. The default value is zero, which implies
maximum overhead and minimum latency.

o Failure_Timeout : Time [1] = MAXIMUM → This is the configurable timeout used to
determine that there has been a packet loss due to a failure in the network. The default value
is a large time, which would imply no error recovery.

o Token_Transmission_Retries : Natural [1] = 0 → Maximum number of retransmissions that
we allow for each packet containing a protocol token.

o Packet_Transmission_Retries : Natural [1] = 0 → Maximum number of retransmissions that
we allow for each packet with user information.

o Arbitration_Token_Size : Bit_Count [1] = MINIMUM → Number of bits of the message used
for priority arbitration.

o Transmit_Token_Size : Bit_Count [1] = MINIMUM → Number of bits of the message used for
appointing the next transmit node.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Referenced> Synchronization_Source : Clock_Synchronization_Object [0 .. 1] → Inherited
from Processing_Resource.

o <Referenced> Scheduler : Primary_Scheduler [1] → Inherited from Processing_Resource.

o <Aggregated> Driver_List : Driver [*] → Inherited from Network.

Class AFDX_Link

• Semantics. It represents a link between a processor and/or a switch in a network that uses the
AFDX (Avionics Full Duplex Switched Ethernet) protocol, which is the protocol used in the ARINC
664 standard. The link allows full duplex communications.

• Ancestors hierarchy: Model_Element.Processing_Resource.Network

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

o Speed_Factor : Float [1] = 1.0 → Inherited from Processing_Resource.

o Throughput : Throughput [1] = 0 → Inherited from Network.

Universidad de Cantabria 19

Mast2 Meta-model specification 31 de julio de 2015

o Max_Packet_Size : Bit_Count [1] = MAXIMUM → It describes the maximum amount of user
data included in a packet, excluding any protocol information. The maximum size is used in
the calculation of the number of packets into which a large message is split, calculated as the
ceiling of the message size divided by the maximum packet size.

o Min_Packet_Size : Bit_Count [1] = MAXIMUM → It describes the minimum amount of user
data included in a packet, excluding any protocol information.

o Max_HW_Tx_Latency : Time [1] = MAXIMUM → Maximum technological latency in
transmission in the AFDX hardware.

o Min_HW_Tx_Latency : Time [1] = MAXIMUM → Minimum technological latency in
transmission in the AFDX hardware.

o Avg_HW_Tx_Latency : Time [1] = MAXIMUM → Average technological latency in
transmission in the AFDX hardware.

o Max_HW_Rx_Latency : Time[1] = MAXIMUM → Maximum technological latency in reception
in the AFDX hardware.

o Min_HW_Rx_Latency : Time [1] = MAXIMUM → Minimum technological latency in reception
in the AFDX hardware.

o Avg_HW_Rx_Latency : Time [1] = MAXIMUM → Average technological latency in reception
in the AFDX hardware.

o Ethernet_Overhead : Bit_Count [1] = 160 → It is the number of overhead bytes to be added
to each Ethernet frame. Its value is 160 bits (20 bytes).

o Protocol_Overhead : Bit_Count [1] = 376 → It is the number of overhead bytes corresponding
to the protocol used for communications. Its value is 376 bits (47 bytes) for the UDP/IP used
in AFDX.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Referenced> Synchronization_Source : Clock_Synchronization_Object [0 .. 1] → Inherited
from Processing_Resource.

o <Referenced> Scheduler : Primary_Scheduler [1] → Inherited from Processing_Resource.

o <Aggregated> Driver_List : Driver [*] → Inherited from Network.

Universidad de Cantabria 20

Mast2 Meta-model specification 31 de julio de 2015

4.1.2.1 DRIVERS

Figure 7 – Hierarchy of drivers

<<abstract>> class Driver

• Semantics. It represents activities executed in a processor as a consequence of the transmission
or reception of a message or a message packet through a network

• Ancestors hierarchy: -

• Direct subclasses:

o Packet_Driver

• Attributes: -

• References:

o <Referenced> Owner : Network [1] → The communication network whose processor
overhead model due to the transmission of messages through it is featured by the driver.

Class Packet_Driver

• Semantics. It represents a driver that is activated at each message packet transmission or
reception.

• Ancestors hierarchy: Driver

• Direct subclasses:

o Character_Packet_Driver
o RTEP_Packet_Driver

Universidad de Cantabria 21

Mast2 Meta-model specification 31 de julio de 2015

• Attributes:

o Message_Segmentation : Assertion [1] = Yes → A “Yes|No” value that determines whether
or not the driver is capable of partitioning long messages into several packets and rebuilding
the message at the other end. This attribute influences the overhead model of the driver.

o High_Utilization_Mode : Assertion [1] = Yes → This parameter specifies whether or not the
network is used at a high transmission rate. Its value determines the overhead model that
should be used for the driver. If the value is YES, the system has a high network utilization
and few messages are being partitioned (i.e., mostly short messages); in this case the driver
overhead is modeled as periodic send and receive operations with a period equal to the
minimum packet transmission time (this is called the decoupled overhead model). If the value
is NO, the driver overhead is modeled as message send and message receive operations that
are attached to the transaction that causes the transmission of the message (this is called the
coupled overhead model). Both models are pessimistic, but depending on the network
utilization one of them produces more accurate results. The default value is YES.

• References:

o <Referenced> Owner : Network [1] → Inherited from Driver

o <Referenced> Packet_Server : Thread [0 .. 1] → The reference to the schedulable resource
that is executing the part of the driver that is executed for each packet sent or received (which
in turn has a reference to the scheduler (and indirectly to the processor), and to the
scheduling parameters).

o <Referenced> Packet_Send_Operation : Code_Operation [0 .. 1] → Reference to the
operation that is executed by the packet server each time a packet is sent.

o <Referenced> Packet_Receive_Operation : Code_Operation [0 .. 1] → Reference to the
operation that is executed by the packet server each time a packet is received.

Class Character_Packet_Driver

• Semantics. It is a specialization of a packet driver in which there is an additional overhead
associated with sending each character, as happens in some serial lines.

• Ancestors hierarchy: Driver.Packet_Driver

• Direct_Subclasses: -

• Attributes:

o Message_Segmentation : Assertion [1] = Yes → Inherited from Packet_Driver.

o High_Utilization_Mode : Assertion [1] = Yes → Inherited from Packet_Driver.

o Character_Transmission_Time : Time [1] = 0.0 → Time of character transmission. It
determines the period used for the overhead models of the character send and character
receive operations.

• References:

Universidad de Cantabria 22

Mast2 Meta-model specification 31 de julio de 2015

o <Referenced> Owner : Network [1] → Inherited from Driver

o <Referenced> Packet_Server : Thread [0 .. 1] → Inherited from Packet_Driver.

o <Referenced> Packet_Send_Operation : Code_Operation [0 .. 1] → Inherited from
Packet_Driver.

o <Referenced> Packet_Receive_Operation : Code_Operation [0 .. 1] → Inherited from
Packet_Driver.

o <Referenced> Character_Server : Thread [0 .. 1] → The reference to the schedulable
resource that is executing the part of the driver that is executed for each character sent or
received (which in turn has a reference to the scheduler (and indirectly to the processor), and
to the scheduling parameters).

o <Referenced> Character_Send_Operation : Code_Operation [0 .. 1] → The reference to the
operation that is executed by the character server each time a character is sent.

o <Referenced> Character_Receive_Operation : Code_Operation [0 .. 1] → The reference to
the operation that is executed by the character server each time a character is received.

Class RTEP_Packet_Driver

Figure 8 – The RTEP_Packet_Driver class

• Semantics. It is a specialization of a packet driver that characterizes the Real-Time Ethernet
Protocol, RTEP. This is a token-passing protocol with prioritized messages, that uses a two-phase
mechanism to send each information packet : in first place there is a priority arbitration phase in
which a token is rotated through each station or processing node to determine which is the node
with the highest priority message; in the second phase that node is granted permission to transmit

Universidad de Cantabria 23

Mast2 Meta-model specification 31 de julio de 2015

a packet with information. Compared to a regular packet driver, there are additional overheads
associated with the transmission and reception of the tokens, as well as with the error recovery
mechanisms. In the Decoupled RTA Overhead Model, the period of the overhead transactions used
to model the message send and receive operations is not the minimum packet transmission time,
as with the Packet_Driver, but rather a combination of several attributes. See the RT-EP
documentation for a description of the overhead model.

• Ancestors hierarchy: Driver.Packet_Driver

• Direct subclasses: -

• Attributes:

o Message_Segmentation : Assertion [1] = Yes → Inherited from Packet_Driver.

o High_Utilization_Mode : Assertion [1] = Yes → Inherited from Packet_Driver.

• References:

o <Referenced> Owner : Network [1] → Inherited from Driver

o <Referenced> Packet_Server : Thread [0 .. 1] → Inherited from Packet_Driver.

o <Referenced> Packet_Send_Operation : Code_Operation [0 .. 1] → Inherited from
Packet_Driver

o <Referenced> Packet_Receive_Operation : Codel_Operation [0 .. 1] → Inherited from
Packet_Driver.

o <Referenced> Packet_Interrupt_Server : Thread [0 .. 1] → Reference to the schedulable
resource that is executing the interrupt service routine that handles each incoming packet,
independently of whether it is a packet with information or a protocol token.

o <Referenced> Packet_ISR_Operation : Code_Operation [0 .. 1] → Reference to the operation
executed by the packet server to send a token.

o <Referenced> Token_Check_Operation : Code_Operation [0 .. 1] → Reference to the
operation executed by the packet server to receive and check a token packet

o <Referenced> Token_Manage_Operation : Code_Operation [0 .. 1] → Reference to the
operation executed by the packet server to send a token.

o <Referenced> Packet_Discard_Operation : Code_Operation [0 .. 1] → Reference to the
operation executed by the packet server when a packet is received that is addressed to
another processing node.

o <Referenced> Token_Retransmission_Operation : Code_Operation [0 .. 1] → Reference to
the operation executed by the packet server when a lost token is retransmitted

o <Referenced> Packet_Retransmission_Operation : Code_Operation [0 .. 1] → Reference to
the operation executed by the packet server when a packet with information that was lost is
retransmitted.

Universidad de Cantabria 24

Mast2 Meta-model specification 31 de julio de 2015

4.1.3 NETWORK SWITCHES AND NETWORK ROUTERS

Figure 9 – Hierarchy of switches and routers

<<abstract>> class Network_Switch

• Semantics. It models a communication system specialized in the transfer of messages among
networks. It is capable of delivering messages arriving at an input port to one or more output ports.
The delivery operations are specified through special-purpose message event handlers including a
simple port to port delivery, as well as a message fork handler. The destination port or ports are
implied in the message stream. MAST does not require to define the network topology, since it is
implicitly defined in the transactions. The overhead of a fork operation contains a fixed latency and
a variable latency that depends on the number of output ports (Fork_Latency =
Fixed_Fork_Latency + (Num_Of_Output_Ports * Variable_Fork_Latency). The overhead model
assumes a shared memory switch in which messages do not need to be copied, with special-
purpose hardware that makes it possible to operate all ports simultaneously. Contention occurs of
course when several messages need to be sent to the same output port, in which case a queue is
used at the output port.

• Ancestors hierarchy: Model_Element.Processing_Resource

• Direct subclasses:

o Regular_Switch

Universidad de Cantabria 25

Mast2 Meta-model specification 31 de julio de 2015

o Network_Router

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

o Speed_Factor : Float [1] = 1.0 → Inherited from Processing_Resource.

o Max_Fixed_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → This attribute
represents the maximum value for the fixed part of the latency introduced by the switch
when an input message is replicated in multiple output ports. It is the part that is independent
of the number of replicas.

o Avg_Fixed_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → This attribute represents
the average value for the fixed part of the latency introduced by the switch when an input
message is replicated in multiple output ports. It is the part that is independent of the number
of replicas.

o Min_Fixed_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → This attribute represents
the minimum value for the fixed part of the latency introduced by the switch when an input
message is replicated in multiple output ports. It is the part that is independent of the number
of replicas.

o Max_Variable_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → This attribute is used
to calculate the additional part of the delay introduced by the switch when an input message
is replicated in multiple output ports. It represents the maximum value of the additional delay
that is introduced for each generated replica.

o Avg_Variable_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → This attribute is used
to calculate the additional part of the delay introduced by the switch when an input message
is replicated in multiple output ports. It represents the average value of the additional delay
that is introduced by each generated replica.

o Min_Variable_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → This attribute is used
to calculate the additional part of the delay introduced by the switch when an input message
is replicated in multiple output ports. It represents the minimum value of the additional delay
that is introduced by each generated replica.

o Max_Delivery_Latency : Normalized_Execution_Time [1] = 0.0 → Maximum Latency
introduced by the switch for each port-to-port message delivery.

o Avg_Delivery_Latency : Normalized_Execution_Time [1] = 0.0 → Average Latency introduced
by the switch for each port-to-port message delivery.

o Min_Delivery_Latency : Normalized_Execution_Time [1] = 0.0 → Minimum latency
introduced by the switch for each port-to-port message delivery

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

Universidad de Cantabria 26

Mast2 Meta-model specification 31 de julio de 2015

o <Referenced> Synchronization_Source : Clock_Synchronization_Object [0 .. 1] → Inherited
from Processing_Resource.

o <Referenced> Scheduler : Primary_Scheduler [1] → Inherited from Processing_Resource.

Class Regular_Switch

• Semantics. Concrete and simple switch in which the output queues are assumed to work according
to the policy of output network (for instance, priority-based in case of a fixed priority policy). The
switch is assumed to have routing information preconfigured, so there is no need for additional
network traffic originated by the switch.

• Ancestors hierarchy: Model_Element.Processing_Resource.Network_Switch

• Direct subclasses:

o AFDX_Switch

• Attributes:

o name : Identifier [1] → Inherited from Model_Element

o Speed_Factor : Float [1] = 1.0 → Inherited from Processing_Resource

o Max_Fixed_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Avg_Fixed_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Min_Fixed_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Max_Variable_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Avg_Variable_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Min_Variable_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Max_Delivery_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Avg_Delivery_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Min_Delivery_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

Universidad de Cantabria 27

Mast2 Meta-model specification 31 de julio de 2015

o <Referenced> Synchronization_Source : Clock_Synchronization_Object [0 .. 1] → Inherited
from Processing_Resource.

o <Referenced> Scheduler : Primary_Scheduler [1] → Inherited from Processing_Resource.

Class AFDX_Switch

• Semantics. Concrete and simple switch working according to the AFDX specification.

• Ancestors hierarchy: Model_Element.Processing_Resource.Network_Switch.Regular_Switch

• Direct subclasses: -

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

o Speed_Factor : Float [1] = 1.0 → Inherited from Processing_Resource.

o Max_Fixed_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Avg_Fixed_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Min_Fixed_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Max_Variable_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Avg_Variable_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Min_Variable_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Max_Delivery_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Avg_Delivery_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Min_Delivery_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Referenced> Synchronization_Source : Clock_Synchronization_Object [0 .. 1] → Inherited
from Processing_Resource.

o <Referenced> Scheduler : Primary_Scheduler [1] → Inherited from Processing_Resource.

Universidad de Cantabria 28

Mast2 Meta-model specification 31 de julio de 2015

<<abstract>> class Network_Router

• Semantics. It models a communication system specialized in routing messages among networks. It
is like a network switch but, in addition, it is able to route a message through a destination port
that may be dynamically obtained. In addition to the message event handlers supported by the
switches (message delivery and message fork), routers support the message branch event handler,
which is capable of delivering a message to one output port chosen form of a set of possible
outputs. The overhead model for the message branch event handlers is similar to the model for
message fork. It contains a fixed latency and a variable latency that depends on the number of
possible output ports (Message_Branch_Latency = Message_Fixed_Branch_Latency +
(Num_Of_Possible_Output_Ports * Message_Variable_Branch_Latency)).

• Ancestors hierarchy: Model_Element.Processing_Resource.Network_Switch

• Direct subclasses:

o Regular_Router

• Attributes :

o name : Identifier [1] → Inherited from Model_Element.

o Speed_Factor : Float [1] = 1.0 → Inherited from Processing_Resource.

o Max_Fixed_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Avg_Fixed_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Min_Fixed_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Max_Variable_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Avg_Variable_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Min_Variable_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Max_Delivery_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Avg_Delivery_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Min_Delivery_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Max_Fixed_Branch_Latency : Normalized_Execution_Time [1] = 0.0 → This attribute
represents the maximum value for the fixed part of the delay introduced by the router when

Universidad de Cantabria 29

Mast2 Meta-model specification 31 de julio de 2015

an input message is retransmitted through an output port. It is the part that is independent
of the number of possible output ports.

o Avg_Fixed_Branch_Latency : Normalized_Execution_Time [1] = 0.0 → This attribute
represents the average value for the fixed part of the delay introduced by the router when
an input message is retransmitted through an output port. It is the part that is independent
of the number of possible output ports.

o Min_Fixed_Branch_Latency : Normalized_Execution_Time [1] = 0.0 → This attribute
represents the minimum value for the fixed part of the delay introduced by the router when
an input message is retransmitted through an output port. It is the part that is independent
of the number of possible output ports.

o Max_Variable_Branch_Latency : Normalized_Execution_Time [1] = 0.0 → This attribute is
used to calculate the additional part of the delay introduced by the router when an input
message is retransmitted through an output port. It represents the maximum value of the
additional delay that is introduced by each possible output port.

o Avg_Variable_Branch_Latency : Normalized_Execution_Time [1] = 0.0 → This attribute is
used to calculate the additional part of the delay introduced by the router when an input
message is retransmitted through an output port It represents the average value of the
additional delay that is introduced by each possible output port

o Min_Variable_Branch_Latency : Normalized_Execution_Time [1] = 0.0 → This attribute is
used to calculate the additional part of the delay introduced by the router when an input
message input message is retransmitted through an output port. It represents the minimum
value of the additional delay that is introduced by each possible output port.

• References:
o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Referenced> Synchronization_Source : Clock_Synchronization_Object [0 .. 1] → Inherited
from Processing_Resource.

o <Referenced> Scheduler : Primary_Scheduler [1] → Inherited from Processing_Resource.

Class Regular_Router

• Semantics. Concrete and simple router in which the output queues are assumed to be FIFO queues.

• Ancestors hierarchy:

o Model_Element.Processing_Resource.Network_Switch.Network_Router

• Direct subclasses: -

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

o Speed_Factor : Float [1] = 1.0 → Inherited from Processing_Resource.

Universidad de Cantabria 30

Mast2 Meta-model specification 31 de julio de 2015

o Max_Fixed_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Avg_Fixed_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Min_Fixed_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Max_Variable_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Avg_Variable_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Min_Variable_Fork_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Max_Delivery_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Avg_Delivery_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Min_Delivery_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Switch.

o Max_Fixed_Branch_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Router.

o Avg_Fixed_Branch_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Router.

o Min_Fixed_Branch_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Router.

o Max_Variable_Branch_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Router.

o Avg_Variable_Branch_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Router.

o Min_Variable_Branch_Latency : Normalized_Execution_Time [1] = 0.0 → Inherited from
Network_Router.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Referenced> Synchronization_Source : Clock_Synchronization_Object [0 .. 1] → Inherited
from Processing_Resource.

o <Referenced> Scheduler : Primary_Scheduler [1] → Inherited from Processing_Resource.

Universidad de Cantabria 31

Mast2 Meta-model specification 31 de julio de 2015

Universidad de Cantabria 32

Mast2 Meta-model specification 31 de julio de 2015

4.2 TIMERS AND SYNCHRONIZATION OBJECTS

Figure 10 – The Clock_Synchronization_Object class

Class Clock_Synchronization_Object

• Semantics. It models a clock synchronization mechanism among clocks of different processing
resources. Processing resources that reference the same clock synchronization object are assumed
to have a clock synchronization mechanism among them and are considered as a group of
synchronized resources with a global reference for the implicit or explicit system timer. A system
may contain several of these groups.

• Ancestors hierarch : Model_Element

• Direct subclasses: -

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

o Accuracy : Time [1] = 0.0 → Precision of the synchronization mechanism for this timer. It is
the maximum time deviation of each timer synchronized with it. Its default value is 0.0.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

Universidad de Cantabria 33

Mast2 Meta-model specification 31 de julio de 2015

Figure 11 – Hierarchy of timers

<<abstract>> Class Timer

• Semantics. It models a hardware timer and defines the overhead associated with the management
of the timer and, possibly, its time resolution. Each Timer defines a time domain, although some of
these domains may be synchronized. A timer is useful to represent the overheads associated to the
management of hardware timers and also to model the timing effects caused by its resolution and
by clock synchronization services. When a timer appears as the System_Timer attribute of a
Regular_Processor it is used for the timetable-driven and global EDF policies. Timers that are not
system timers may be synchronized with the system timer of its processor if
Is_Locally_Synchronized is Yes, with the precision given in the Precision attribute.

• Ancestors hierarchy: Model_Element

• Direct subclasses:

o Ticker
o Alarm_Clock

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

o Max_Overhead : Normalized_Execution_Time [1] = 0.0 → This is the maximum overhead of
the timer interrupt, which is assumed to execute at the highest interrupt priority.

o Avg_Overhead : Normalized_Execution_Time [1] = 0.0 → This is the average overhead of the
timer interrupt, which is assumed to execute at the highest interrupt priority.

o Min_Overhead : Normalized_Execution_Time [1] = 0.0 → This is the minimum overhead of
the timer interrupt, which is assumed to execute at the highest interrupt priority.

o Is_Locally_Synchronized : Assertion [1] = No → A “Yes|No” value that determines whether
or not the timer is locally synchronized with the processor’s system timer. This attribute can
only be set to Yes for non system timers.

Universidad de Cantabria 34

Mast2 Meta-model specification 31 de julio de 2015

o Accuracy : Time [1] = 0.0 → Precision of the local synchronization mechanism for this timer.
It is the maximum time deviation with respect to the system timer. Its value is only
meaningful for timers that are locally synchronized. Its default value is 0.0.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

Class Ticker

• Semantics. It models a timer implemented as a periodic ticker, i.e., a periodic interrupt that arrives
at the system. When this interrupt arrives, all those timed events referencing the ticker whose
expiration time has already passed, are activated. In this model, the overhead caused by the timer
interrupt is localized in a single periodic interrupt, but jitter is introduced in all the associated timed
events, because the resolution is the ticker period.

• Ancestors hierarchy: Model_Element.Timer

• Direct subclasses: -

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

o Max_Overhead : Normalized_Execution_Time [1] = 0.0 → Inherited from Timer.

o Avg_Overhead : Normalized_Execution_Time [1] = 0.0 → Inherited from Timer.

o Min_Overhead : Normalized_Execution_Time [1] = 0.0 → Inherited from Timer.

o Is_Locally_Synchronized : Assertion [1] = No → Inherited from Timer.

o Accuracy : Time [1] = 0.0 → Inherited from Timer.

o Period : Time [1] = MAXIMUM → Period of the ticker interrupt

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

Class Alarm_Clock

• Semantics. It models a timer implemented by a hardware timer interrupt that is always
programmed to generate the interrupt at the time of the closest associated timed event.
Consequently, each event generates its own interrupt that causes an overhead.

• Ancestors hierarchy: Model_Element.Timer

• Direct subclasses: -

• Attributes:

o Name : Identifier [1] → Inherited from Model_Element.

o Max_Overhead : Normalized_Execution_Time [1] = 0.0 → Inherited from Timer.

Universidad de Cantabria 35

Mast2 Meta-model specification 31 de julio de 2015

o Avg_Overhead : Normalized_Execution_Time [1] = 0.0 → Inherited from Timer.

o Min_Overhead : Normalized_Execution_Time [1] = 0.0 → Inherited from Timer.

o Is_Locally_Synchronized : Assertion [1] = No → Inherited from Timer.

o Accuracy : Time [1] = 0.0 → Inherited from Timer.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

Universidad de Cantabria 36

Mast2 Meta-model specification 31 de julio de 2015

4.3 SCHEDULERS

Figure 12 – Hierarchy of schedulers

<<abstract>> class Scheduler

• Semantics. It models the operating system or network subsystem objects that implement the
appropriate scheduling strategies to manage the amount of processing capacity that has been
assigned to them. Its scheduling strategy is defined by means of the associated Scheduling_Policy
object. Schedulers can have a hierarchical structure. A Primary Scheduler operates by offering the
whole processing capacity of its associated base processor to its associated schedulable resources.
A Secondary Scheduler is allowed to deliver to its schedulable resources just the processing
capacity that it receives from its associated schedulable resource, scheduled in turn by some other
scheduler.

• Ancestors hierarchy: Model_Element

• Direct subclasses:

o Primary_Scheduler
o Secondary_Scheduler

• Attributes:

o name : Identifier [1] → Inherited from Model_Element

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Aggregated> Policy : Scheduling_Policy [1] → It represents the scheduling policy, which is
the basic strategy that is implemented by the scheduler to distribute the assigned processing
capacity among the schedulable resources associated to the same scheduler.

o <Referenced> Schedulable_Resource_List : Schedulable_Resource [1 .. *] → The list of
schedulable resources served by the scheduler.

Class Primary_Scheduler

Universidad de Cantabria 37

Mast2 Meta-model specification 31 de julio de 2015

• Semantics. It represents the base system scheduler for its associated processing resource.

• Ancestors hierarchy: Model_Element.Scheduler

• Attributes:

o name : Identifier [1]→ Inherited from Model_Element.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Referenced> Schedulable_Resource_List : Schedulable_Resource [1 .. *] → Inherited from
Scheduler.

o <Aggregated> Policy : Scheduling_Policy [1] → Inherited from Scheduler.

o <Referenced> Host : Processing_Resource [1] → It references the processing resource that
supplies the processing capacity to be scheduled.

Class Secondary_Scheduler

• Semantics. It is allowed to deliver to its schedulable resources just the processing capacity that it
receives from its associated schedulable resource, scheduled in turn by some other scheduler.

• Ancestors hierarchy: Model_Element.Scheduler

• Direct subclasses: -

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Referenced> Schedulable_Resource_List : Schedulable_Resource [1 .. *] → Inherited from
Scheduler.

o <Aggregated> Policy : Scheduling_Policy [1] → Inherited from Scheduler.

o <Referenced> Host : Schedulable_Resource [1] → It references the schedulable resource that
supplies the processing capacity to be scheduled.

Universidad de Cantabria 38

Mast2 Meta-model specification 31 de julio de 2015

4.3.1 SCHEDULING POLICIES

Figure 13 – Hierarchy of scheduling policies

<<abstract>> class Scheduling_Policy

• Semantics. A scheduling policy represents the basic strategy that is implemented in a scheduler to
deliver the assigned processing capacity to those schedulable resources associated with the same
scheduler. Each of these schedulable resources has a Scheduling_Parameters object that describes
the parameters used by the scheduler.

• Ancestors hierarchy: -

• Direct subclasses:

o Fixed_Priority_Policy
o EDF_Policy
o FP_Packet_Based_Policy
o AFDX_Policy
o Timetable_Driven

• Attributes: -

• References: -

Class Fixed_Priority_Policy

• Semantics. It represents a fixed-priority policy. It can only be assigned to a scheduler that has a
Regular_Processor as its host.

• Ancestors hierarchy: Scheduling_Policy

• Direct subclasses: -

• Attributes:

Universidad de Cantabria 39

Mast2 Meta-model specification 31 de julio de 2015

o Max_Priority : Priority [1] = MAXIMUM → It defines the maximum priority that is valid for
normal operations on schedulable resources scheduled with this policy.

o Min_Priority : Priority [1] = MINIMUM → It defines the minimum priority that is valid for
normal operations on schedulable resources scheduled with this policy.

o Worst_Context_Switch : Normalized_Execution_Time [1] = 0.0 → Maximum overhead for a
context switch between schedulable resources.

o Avg_Context_Switch : Normalized_Execution_Time [1] = 0.0 → Average overhead for a
context switch between schedulable resources.

o Best_Context_Switch : Normalized_Execution_Time = 0.0 → Minimum overhead for a
context switch between schedulable resources.

• References: -

Class EDF_Policy

• Semantics. It represents an Earliest Deadline First policy. In the EDF policy each schedulable
resource is assigned a relative deadline, and is scheduled with an absolute deadline that is equal to
the relative deadline plus the generation time of the event instance being executed. The generation
time can be accounted for in two different ways, leading to the so called Global EDF or Local EDF
variants. In Global EDF the event generation time corresponds to the generation time of the
workload event that is being processed. This time is meaningful only for steps in the same
processing resource where the workload event was generated, or in processing resources that have
their system timers synchronized with it. However, it is not meaningful in processing resources that
are not synchronized with the processing resource where the workload event was generated. For
these non-synchronized resources local EDF is assumed, implying that the generation time of the
event is the time at which the internal event being processed arrived in the processing resource.
The EDF Policy can only be assigned to a scheduler that has a Regular_Processor as its host.

• Ancestors hierarchy: Scheduling_Policy

• Direct subclasses: -

• Attributes:

o Worst_Context_Switch : Normalized_Execution_Time [1] = 0.0 → Maximum overhead for a
context switch between schedulable resources.

o Avg_Context_Switch : Normalized_Execution_Time [1] = 0.0 → Average overhead for a
context switch between schedulable resources.

o Best_Context_Switch : Normalized_Execution_Time [1] = 0.0 → Minimum overhead for a
context switch between schedulable resources.

o Is_Global : Assertion [1] = Yes → If this parameter is set to the value “Yes”, the scheduler
manages global deadlines. Otherwise, it manages local deadlines

Universidad de Cantabria 40

Mast2 Meta-model specification 31 de julio de 2015

Class FP_Packet_Based_Policy

• Semantics. It represents a fixed priority policy used in a packet oriented communication network.
Network packets are assumed to be non preemptible. It can only be assigned to a scheduler that
has a Packet_Based_Network as its host.

• Ancestors hierarchy: Scheduling_Policy

• Direct subclasses: -

• Attributes:

o Max_Priority : Priority [1] = MAXIMUM → It defines the maximum priority valid for messages
to be sent using this policy.

o Min_Priority : Priority [1] = MINIMUM → It defines the minimum priority valid for messages
to be sent using this policy.

o Packet_Overhead_Max_Size : Bit_Count [1] = 0 → Maximum overhead associated with
sending each packet, because of the protocol messages or headers that need to be sent
before or after each packet. It specifies the overheads using a bit count (which is then
translated to time using the throughput attribute of the network associated to the scheduler
that uses this policy).

o Packet_Overhead_Avg_Size : Bit_Count [1] = 0 → Average overhead associated with sending
each packet, because of the protocol messages or headers that need to be sent before or
after each packet. It specifies the overheads using a bit count (which is then translated to
time using the throughput attribute of the network associated to the scheduler that uses this
policy).

o Packet_Overhead_Min_Size : Bit_Count [1] = 0 → Minimum overhead associated with
sending each packet, because of the protocol messages or headers that need to be sent
before or after each packet. It specifies the overheads using a bit count (which is then
translated to time using the throughput attribute of the network associated to the scheduler
that uses this policy).

• References: -

Class Partition_Window

• Semantics. Data required to define each execution window inside a partition in the
Timetable_Driven policy.

• Ancestors hierarchy: -

• Direct subclasses: -

• Attributes:

o Partition_Id : Natural [1] → Natural integer that is used as identifier of the partition to which
this window belongs. Multiple windows may belong to the same partition.

Universidad de Cantabria 41

Mast2 Meta-model specification 31 de julio de 2015

o Partition_Name : Identifier [1] = null → Optional identifier that is used as the partition name,
for expressiveness purposes. Each partition name must correspond to a unique partition Id.

o Start_Time : Time [1] → Start time of the window inside the partition (relative to the start of
the major frame (MAF) used as the origin of time for the partitions).

o Length : Time [1] → Duration of the window.

• References: -

<<abstract>> class Timetable_Driven

• Semantics. It represents a timetable-driven policy. A scheduler using this policy schedules its
associated Schedulable Resources by assigning them to the partitions specified in the
corresponding Timetable_Driven_Params. Each partition contains one or more time windows
which are the only intervals during which schedulable resources assigned to the partition will be
allowed to execute. The partition windows operate during an interval called the major frame
(MAF). This schedule is then repeated in a cyclic manner. When more than one schedulable
resource are assigned to the same partition a secondary scheduler may be needed to schedule the
available time inside the partition.

• Ancestors hierarchy: Scheduling_Policy

• Direct subclasses:

o Timetable_Driven_Policy
o Timetable_Driven_Packet_Based_Policy

• Attributes:

o MAF : Time [1] = MAXIMUM → Time interval in which the execution of the partition windows
is scheduled. The schedule is repeated in a cyclic manner. All the Timetable_Driven_Policy
objects that are synchronized through their associated processing resources should have the
same MAF.

• References:

o <Aggregated> Partition_Table : Partition_Window [1 .. *] → List of partition windows to be
scheduled in each MAF.

Class Timetable_Driven_Policy

• Semantics. It represents a concrete Timetable Driven policy for processors. It only can be assigned
to a scheduler that has a Regular_Processor as host.

• Ancestors hierarchy: Scheduling_Policy. Timetable_Driven

• Direct subclasses: -

• Attributes:

o MAF : Time [1] = MAXIMUM → Inherited from Timetable_Driven.

Universidad de Cantabria 42

Mast2 Meta-model specification 31 de julio de 2015

o Worst_Context_Switch : Normalized_Execution_Time [1] = 0.0 → Worst overhead for a
context switch between schedulable resources.

o Avg_Context_Switch : Normalized_Execution_Time [1] = 0.0 → Average overhead for a
context switch between schedulable resources.

o Best_Context_Switch : Normalized_Execution_Time [1] = 0.0 → Minimum overhead for a
context switch between schedulable resources.

• References:

o <Aggregated> Partition_Table : Partition_Window [1 .. *] → Inherited from
Timetable_Driven.

Class Timetable_Driven_Packet_Based_Policy

• Semantics. It represents a Timetable Driven policy assigned to a scheduler that has a
Packet_Based_Network as its host.

• Ancestors hierarchy: Scheduling_Policy.Timetable_Driven

• Direct subclasses: -

• Attributes:

o MAF : Time [1] = MAXIMUM → Inherited from Timetable_Driven.

• References:

o <Aggregated> Partition_Table : Partition_Window [1 .. *] → Inherited from
Timetable_Driven.

Class AFDX_Policy

• Semantics. It represents the scheduling policy used in an AFDX network in which messages are
scheduled through virtual links when they are originated at an end-system (a processor). Messages
are scheduled in FIFO order when they are originated at an AFDX switch. The AFDX policy may only
be assigned to a scheduler that has an AFDX_Link as its host.

• Ancestors hierarchy: Scheduling_Policy

• Direct subclasses: -

• Attributes: -

• References: -

Universidad de Cantabria 43

Mast2 Meta-model specification 31 de julio de 2015

Universidad de Cantabria 44

Mast2 Meta-model specification 31 de julio de 2015

4.4 SCHEDULABLE RESOURCES

Figure 14 – Hierarchy of schedulable resources

<<abstract>> class Schedulable_Resource

• Semantics. It models a schedulable entity in a processing resource. It represents a unit of
concurrent execution in a processor (task, single-threaded process, thread, interrupt service
routine ...) or network (communication channel, communication session ...).

• Ancestors hierarchy: Model_Element

• Direct subclasses:

o Thread
o Communication_Channel

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Aggregated> Scheduling_Parameters : Scheduling_Parameters [0 .. 1] → Object with the
parameters that are needed by the scheduler to apply the corresponding scheduling policy.
The scheduling parameters of a schedulable resource must be compatible with the
scheduling policy of the corresponding scheduler. It can be null only in the case of a
Virtual_Schedulable_Resource.

Universidad de Cantabria 45

Mast2 Meta-model specification 31 de julio de 2015

o <Referenced> Scheduler : Scheduler [1] → Reference to the scheduler that serves it. It can
be null only in the case of a Virtual_Schedulable_Resource.

Class Thread

• Semantics. It is a specialized Schedulable_Resource for the execution of code in a
Computing_Resource. It represents a conceptual flow of execution that is implemented as a thread,
or a task, or a single-threaded process, or even an interrupt service routine.

• Ancestors hierarchy: Model_Element.Schedulable_Resource

• Direct subclasses:

o Virtual_Schedulable_Resource

• Attributes:

o name : Identifier → Inherited from Model_Element.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Aggregated> Scheduling_Parameters : Scheduling_Parameters [0 .. 1] → Inherited from
Schedulable_Resource.

o <Referenced> Scheduler : Scheduler [0 .. 1] → Inherited from Schedulable_Resource.

o <Aggregated> Synchronization_Parameters : Synchronization_Parameters [0 .. 1] → Object
with the parameters that are needed by the scheduler to apply the corresponding
synchronization protocol in the mutually exclusive access to shared resources using a mutual
exclusion resource. It should be present whenever the synchronization protocols used by the
thread need more information than the one available in the scheduling parameters (for
instance, for the SRP protocol).

Class Virtual_Schedulable_Resource

• Semantics. It is a specialized Schedulable_Resource that is used to schedule the execution of
activities independently of the processing resource in which they are physically executed and the
workload of that processing resource. It plays a double role with two viewpoints. When seen from
the application viewpoint, the virtual schedulable resource represents a portion of a schedulable
resource with guaranteed bandwidth and responsiveness. When seen from the viewpoint of the
processing resource it represents a concrete workload that has to be scheduled.

 - From the point of view of the applications, the virtual schedulable resource represents a resource
reservation contract that is referenced through the Resource_Reservation_Params association.
The reservation is independent of the underlying implementation of the virtual resource, which is
captured in the referenced scheduler (Scheduler association) and the scheduling parameters
assigned (Scheduling_Parameters association); these do not affect the reservation guaranteed to
the application, except that they are used to know the Speed_Factor of the underlying

Universidad de Cantabria 46

Mast2 Meta-model specification 31 de julio de 2015

Processing_Resource and the mutual exclusion operations that may influence the scheduling due
to being executed on it.

 - From the point of view of the execution platform, the virtual schedulable resource represents a
concrete workload with the timing requirements that are defined by the resource reservation
contract, which must be scheduled in an actual scheduler (Scheduler association) with the actual
scheduling parameters characterized by the Scheduling_Parameters association.

This double viewpoint of the virtual schedulable resource makes it possible to make two kinds of
analysis : on the one hand, it is possible to analyze an application running on top of a virtual
resource independently of the rest of the system. On the second hand, it is possible to analyze the
schedulability of a set of virtual schedulable resources running in a particular physical platform,
independently of the actual applications that will run on top of them. This kind of double analysis
makes it possible to independently develop application components that run in virtual resources,
and, later, analyze the feasibility of a particular composition of these application components,
without the need to know about their internal details.

• Ancestors hierarchy: Model_Element.Schedulable_Resource.Thread

• Direct subclasses: -

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Aggregated> Scheduling_Parameters : Scheduling_Parameters [0 .. 1] → Inherited from
Schedulable_Resource.

o <Referenced> Scheduler : Scheduler [0 .. 1] → Inherited from Schedulable_Resource.

o <Aggregated> Synchronization_Parameters : Synchronization_Parameters [0 .. 1] →
Inherited from Thread.

o <Aggregated> Virtual_Resource_Params : Virtual_Resource_Params [1] → Scheduling
parameters of the resource reservation contract associated to the
Virtual_Schedulable_Resource.

Class Communication_Channel

• Semantics. It is a specialized Schedulable_Resource for message transmission in a network.

• Ancestors hierarchy: Model_Element.Schedulable_Resource

• Direct subclasses:

o Virtual_Communication_Channel

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

Universidad de Cantabria 47

Mast2 Meta-model specification 31 de julio de 2015

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Aggregated> Scheduling_Parameters : Scheduling_Parameters [0 .. 1] → Inherited from
Schedulable_Resource.

o <Referenced> Scheduler : Scheduler [0 .. 1] → Inherited from Schedulable_Resource.

Class Virtual_Comm_Channel

• Semantics. It is a specialized Communication_Channel that is used to schedule the submission of a
set of messages independently of the physical network through which they are sent and the traffic
that it supports. It plays a double role :

From the point of view of the applications it represents the scheduling of the messages in the
resource reservation contract referenced through the Resource_Reservation_Params association.
The reservation is independent of the underlying implementation of the virtual resource, which is
captured in the referenced scheduler (Scheduler association) and the scheduling parameters
assigned (Scheduling_Parameters association); these do not affect the reservation guaranteed to
the application, except that they are used to know the Speed_Factor of the underlying
Processing_Resource.

From the point of view of the execution platform, it represents the scheduling of the messages with
the timing requirements defined in the resource reservation contract, which must be scheduled by
the real scheduler (referenced through the Scheduler association) and with the scheduling
parameters referenced through the Scheduling_Parameters association.

• Ancestors hierarchy: Model_Element.Schedulable_Resource.Communication_Channel

• Direct subclasses: -

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Aggregated> Scheduling_Parameters : Scheduling_Parameters [0.1] → Inherited from
Schedulable_Resource.

o <Referenced> Scheduler : Scheduler [0 .. 1] → Inherited from Schedulable_Resource.

o <Aggregated> Virtual_Comm_Channel_Params : Virtual_Comm_Channel_Params →
Scheduling parameters that define the resource reservation contract associated to the
Virtual_Communication_Channel.

Object DEFAULT_COMMUNICATION_CHANNEL : Communication_Channel → Instance of
Communication_Channel that represents the default communication channel used for
communications through AFDX links when the message is originated at an AFDX switch. This instance

Universidad de Cantabria 48

Mast2 Meta-model specification 31 de julio de 2015

is predefined for each AFDX Link for convenience, because no attributes are needed. The implicit
scheduling policy is FIFO ordering for the messages.

4.4.1 SCHEDULING PARAMETERS

Figure 15 – Hierarchy of scheduling parameters

<<abstract>> class Scheduling_Parameters

• Semantics. This class represents the parameters that are attached to a schedulable resource. They
are used by its scheduler to make its scheduling decisions when the schedulable resource is
competing with other ones. Some scheduling policies allow several compatible scheduling
behaviours to coexist in the system. For example, the fixed priority scheduling policy allows both
preemptive and non preemptive activities. These different scheduling behaviours are determined
by the scheduling parameters type and are also called the per-server policy parameters. There are
several classes of scheduling parameters. There are some restrictions on the compatibility between
scheduling parameters and the scheduling policy of the associated scheduler.

• Ancestors hierarchy:

• Direct subclasses:

o Interrupt_Based_Params
o Priority_Based_Params
o EDF_Based_Params
o Resource_Reservation_Based_Params
o Timetable_Driven_Based_Params
o AFDX_Virtual_Link

• Attributes: -

• References: -

Universidad de Cantabria 49

Mast2 Meta-model specification 31 de julio de 2015

4.4.1.1 PRIORITY-BASED SCHEDULING PARAMETERS

Figure 16 – Hierarchy of priority-based scheduling parameters

<<abstract>> class Interrupt_Based_Params

• Semantics. It represents an interrupt service routine. It has no additional attributes. It is applicable
to any application scheduler, because interrupt service routines are handled directly by the
Computing Resource.

• Ancestors hierarchy: Scheduling_Parameters

• Direct subclasses:

o Interrupt_FP_Params

• Attributes: -

• References: -

Class Interrupt_FP_Params

• Semantics. It represents the parameters of an interrupt service routine. This kind of activity cannot
be preempted by application activities, but can be preempted by interrupt activities with higher
priority.

• Ancestors hierarchy: Scheduling_Parameters.Interrupt_Based_Params

• Direct subclasses: -

• Attributes:

o Priority : Interrupt_Priority [1] = MINIMUM → A positive number that represents the
interrupt priority. It must be within the valid ranges for the associated computing resource.
The interrupt priority is always preassigned (i.e., it is not computed by the priority assignment
tools)

Universidad de Cantabria 50

Mast2 Meta-model specification 31 de julio de 2015

<<abstract>> class Priority_Based_Params

• Semantics. This kind of scheduling parameters is only applicable to schedulers with the fixed
priority policy or the Packet_Based_FP policy.

• Ancestors hierarchy: Scheduling_Parameters

• Direct subclasses:

o Non_Preemptible_FP_Params
o Fixed_Priority_Params
o Periodic_Server_Params
o Periodic_Server_Comm_Params
o Polling_Params

• Attributes:

o Priority : Priority [1] = MINIMUM → A positive number that represents the scheduling
priority. It must be within the valid ranges for the associated scheduler.

o Preassigned : Assertion [1] = No → If this parameter is set to the value “No”, the priority may
be assigned by one of the priority assignment tools. Otherwise, the priority is fixed and
cannot be changed by those tools.

• References: -

Class Non_Preemptible_FP_Params

• Semantics. Activities scheduled with these parameters are scheduled under non preemptive fixed
priorities.

• Ancestors hierarchy: Scheduling_Params.Priority_Based_Params

• Direct subclasses: -

• Attributes:

o Priority : Priority [1] = MINIMUM → Inherited from Priority_Based_Params.

o Preassigned : Assertion [1] = No → Inherited from Priority_Based_Params.

• References: -

Class Fixed_Priority_Params

• Semantics. Activities scheduled with these parameters are scheduled under preemptive fixed
priorities.

• Ancestors hierarchy: Scheduling_Parameters.Priority_Based_Params

• Direct subclasses: -

• Attributes:

o Priority : Priority [1] = MINIMUM → Inherited from Priority_Based_Params.

Universidad de Cantabria 51

Mast2 Meta-model specification 31 de julio de 2015

o Preassigned : Assertion [1] = No → Inherited from Priority_Based_Params.

• References: -

Class Polling_Params

• Semantics. Activities scheduled with these parameters use a scheduling mechanism by which there
is a periodic fixed priority task that polls for the arrival of its input event. Thus, execution of the
event may be delayed until the next period. The polling action has an overhead even if the event
has not arrived.

• Ancestors hierarchy: Scheduling_Parameters.Priority_Based_Params

• Direct subclasses: -

• Attributes:

o Priority : Priority [1] = MINIMUM → Inherited from Priority_Based_Params.

o Preassigned : Assertion [1] = No → Inherited from Priority_Based_Params.

o Polling_Period : Time [1] = 0.0 → Period of the polling task.

o Polling_Worst_Overhead : Normalized_Execution_Time [1] = 0.0 → Maximum overhead of
the polling task.

o Polling_Avg_Overhead : Normalized_Execution_Time [1] = 0.0 → Average overhead of the
polling task.

o Polling_Best_Overhead : Normalized_Execution_Time [1] = 0.0 → Minimum overhead of the
polling task.

• References: -

Class Periodic_Server_Params

• Semantics. Activities with these parameters are scheduled under the periodic server scheduling
algorithm. Following this algorithm, for each time interval equal to the Replenishment_Period, the
task can be scheduled only during a time equal to Initial_Capacity. The capacity is available at the
beginning of the replenishment period and is not preserved if the activity is not ready of terminates.
The available capacity is consumed according to the preemptive fixed priority scheduling rules.

• Ancestors hierarchy: Scheduling_Parameters.Priority_Based_Params

• Direct subclasses:

o Sporadic_Server_Params

• Attributes:

o Priority : Priority [1] = MINIMUM → Inherited from Priority_Based_Params.

o Preassigned : Assertion [1] = No → Inherited from Priority_Based_Params.

Universidad de Cantabria 52

Mast2 Meta-model specification 31 de julio de 2015

o Initial_Capacity : Time [|] = 0.0 → It is the initial value of the execution capacity. Its default
value is zero.

o Replenishment_Period : Time [1] = 0.0 → It is the period after which the capacity consumed
is replenished.

Class Sporadic_Server_Params

• Semantics. Activities with these parameters are scheduled under the sporadic server scheduling
algorithm. The task is assigned an initial capacity that is preserved until it is consumed. Portions of
capacity that are consumed are replenished after one replenishment period. When the task has
execution capacity available it is scheduled with its normal priority. Once the capacity becomes
zero the priority is reduced to the Background_Priority, and restored back to the normal priority
when more capacity becomes replenished.

• Ancestors hierarchy: Scheduling_Parameters.Priority_Based_Params.Periodic_Server_Params

• Direct subclasses: -

• Attributes:

o Priority : Priority [1] = MINIMUM → Inherited from Priority_Based_Params.

o Preassigned : Assertion [1] = No → Inherited from Priority_Based_Params.

o Initial_Capacity : Time [1] = 0.0 → Inherited from Periodic_Server_Params.

o Replenishment_Period : Time [1] = 0.0 → Inherited from Periodic_Server_Params.

o Background_Priority : Priority [1] = MINIMUM → The priority at which the task executes
when there is no available execution capacity.

o Max_Pending_Replenishments : Positive [1] = 1 → It is the maximum number of
simultaneously pending replenishment operations.

• References: -

Class Periodic_Server_Comm_Params

• Semantics. Communication channels with these parameters transmit their messages under the
periodic server scheduling algorithm. When sending a message, only a number of bits equal to
Initial_Capacity are sent for each time interval equal to Replenishment_Period. This capacity is not
preserved if there is no message ready or is the messages available get transmitted before the
capacity is consumed.

• Ancestors hierarchy: Scheduling_Params.Priority_Based_Params

• Direct subclasses:

o Sporadic_Server_Comm_Params.

• Attributes:

Universidad de Cantabria 53

Mast2 Meta-model specification 31 de julio de 2015

o Priority : Priority [1] = MINIMUM → Inherited from Priority_Based_Params.

o Preassigned : Assertion [1] = No → Inherited from Priority_Based_Params.

o Initial_Capacity : Bit_Count [1] = 0 → It is the initial value of the number of bits that can be
sent.

o Replenishment_Period : Time [1] = 0.0 → It is the period after which the capacity spent is
replenished.

• References: -

Class Sporadic_Server_Comm_Params

• Semantics. Communication channels with these parameters transmit their messages under the
sporadic server scheduling algorithm. The channel is assigned an initial capacity that is preserved
until it is consumed. Portions of capacity that are consumed are replenished after one
replenishment period. When the channel has execution capacity available it is scheduled with its
normal priority. Once the capacity becomes zero the priority is reduced to the Background_Priority,
and restored back to the normal priority when more capacity becomes replenished.

• Ancestors hierarchy: Scheduling_Params.Priority_Based_Params.Periodic_Server_Comm_Params

• Direct subclasses: -

• Attributes:

o Priority : Priority [1] = MINIMUM → Inherited from Priority_Based_Params.

o Preassigned : Assertion [1] = No → Inherited from Priority_Based_Params.

o Initial_Capacity : Bit_Count [1] = 0 → Inherited from Periodic_Server_Comm_Params.

o Replenishment_Period : Time [1] = 0.0 → Inherited from Periodic_Server_Params.

o Background_Priority : Priority [1] = MINIMUM → The priority at which the channel sends its
messages when there is no available capacity.

o Max_Pending_Replenishments : Positive [1] = 1 → It is the maximum number of
simultaneously pending replenishment operations.

• References: -

Universidad de Cantabria 54

Mast2 Meta-model specification 31 de julio de 2015

4.4.1.2 EDF SCHEDULING PARAMETERS

Figure 17 – Hierarchy of EDF scheduling parameters

<<abstract>> class EDF_Based_Params

• Semantics. These scheduling parameters are only applicable to schedulers with EDF policy

• Ancestors hierarchy: Scheduling_Parameters

• Direct subclasses:

o EDF_Params

• Attributes:

o Deadline : Time [1] = MAXIMUM → Relative deadline of the associated schedulable resource.

o Preassigned : Assertion [1] = No → If this parameter is set to the value “No”, the deadline
may be assigned by one of the deadline assignment tools. Otherwise, the deadline is fixed
and cannot be changed by those tools.

• References: -

Class EDF_Params

• Semantics. Concrete EDF scheduling parameters.

• Ancestors hierarchy: Scheduling_Parameters.EDF_Based_Params

• Direct subclasses: -

• Attributes:

o Deadline : Time [1] = MAXIMUM → Inherited from EDF_Based_Params.

o Preassigned : Assertion [1] = No → Inherited from EDF_Based_Params.

• References: -

Universidad de Cantabria 55

Mast2 Meta-model specification 31 de julio de 2015

4.4.1.3 RESOURCE RESERVATION SCHEDULING PARAMETERS

Figure 18- Hierarchy of resource reservation params

<<abstract>> class Resource_Reservation_Params

• Semantics. The scheduling parameters are only applicable to virtual schedulable resources
(Virtual_Communication_Channel or Virtual_ Schedulable_Resource) as their
Resource_Reservation_Params association.

• Ancestors hierarchy: Scheduling_Parameters

• Direct subclasses:

o Virtual_Resource_Params
o Virtual_Comm_Channel_Params

• Attributes:

o Preassigned : Assertion [1] = No → If this parameter is set to the value “No”, the scheduling
parameters may be assigned by one of the scheduling design tools. Otherwise, the
parameters are fixed and cannot be changed by those tools.

• References: -

Universidad de Cantabria 56

Mast2 Meta-model specification 31 de julio de 2015

<<abstract>> class Virtual_Resource_Params

• Semantics. Resource reservation contract for a Resource Reservation policy. It represents a service
contract that contains the information related to the application minimum resource requirements.

• Ancestors hierarchy: Scheduling_Parameters.Resource_Reservation_Params

• Direct subclasses:

o Virtual_Periodic_Replenishment_Params
• Attributes:

o Preassigned : Assertion [1] = No → Inherited from Resource_Reservation_Params.

• References: -

<<abstract>> class Virtual_Periodic_Replenishment_Params

• Semantics. The server executes any ready tasks until its capacity is exhausted. The server budget
will be filled up a policy defined in the concrete classes, depending on a period attribute. The server
guarantees that a piece of work of size less than or equal to the minimum budget and requested
for a server with full capacity will be completed by the server’s deadline.

• Ancestors hierarchy:
Scheduling_Parameters.Resource_Reservation_Params.Virtual_Resource_Params

• Direct subclasses:

o Virtual_Periodic_Server_Params
o Virtual_Deferrable_Server_Params
o Virtual_Sporadic_Server_Params

• Attributes:

o Preassigned : Assertion [1] = No → Inherited from Resource_Reservation_Params

o Budget : Normalized_Execution_Time [1] = 0.0 → Minimum execution capacity per server
period.

o Deadline : Time [1] = MAXIMUM → The server guarantees that a piece of work of size less
than or equal to the minimum budget and requested for a server with full capacity will be
completed by the server’s deadline.

o Period : Time [1] = MAXIMUM → The period of the replenishment mechanism. The virtual
resource will guarantee that every period, the part of the application running on it will get, if
requested at the start of the period, at least the minimum budget on the processing resource
on which the associated schedulable resource is running.

• References: -

Universidad de Cantabria 57

Mast2 Meta-model specification 31 de julio de 2015

Class Virtual_Periodic_Server_Params

• Semantics. The Periodic Server is invoked with a fixed period and executes any ready tasks until its
capacity is exhausted. Note each application is assumed to contain an idle task that continuously
consumes the available capacity and so on, therefore the server’s capacity is fully consumed during
each period. Once the server’s capacity is exhausted, the server suspends execution until its
capacity is replenished at the start of its next period. If a task arrives before the server’s capacity
has been exhausted then it will be serviced. Execution of the server may be delayed and or pre-
empted by the execution of other servers at a higher priority. The server guarantees that a piece
of work of size less than or equal to the minimum budget and requested for a server with full
capacity at the start of the period will be completed by the server’s deadline. The release jitter of
the Periodic Server is assumed to be zero.

• Ancestors hierarchy:
Scheduling_Parameters.Resource_Reservation_Params.Virtual_Resource_Params.Virtual_Periodic
_Replenishment_Params

• Attributes:

o Preassigned : Assertion [1] = No → Inherited from Resource_Reservation_Params

o Budget : Normalized_Execution_Time [1] = 0.0 → Inherited from Virtual_Periodic_
Replenishment_Params

o Deadline : Time [1] = MAXIMUM → Inherited from Virtual_Periodic_Replenishment_ Params

o Period : Time [1] = MAXIMUM → Inherited from Virtual_Periodic_Replenishment_Params

• References: -

Class Virtual_Deferrable_Server_Params

• Semantics. The Virtual_Deferrable_Server allows any of its clients to use its resource any time
within the period until its budget is exhausted. The server budget will be filled up periodically with
the specified period. The budget cannot be saved for future use, which means that any unclaimed
budget left from the previous replenishment is always thrown away at the next replenishment.

• Ancestors hierarchy:
Scheduling_Parameters.Resource_Reservation_Params.Virtual_Resource_Params.Virtual_Periodic
_Replenishment_Params

• Direct subclasses: -

• Attributes:

o Preassigned : Assertion [1] = No → Inherited from Resource_Reservation_Params

o Budget : Normalized_Execution_Time [1] = 0.0 → Inherited from Virtual_Periodic_
Replenishment_Params

o Deadline : Time [1] = MAXIMUM → Inherited from Virtual_Periodic_Replenishment_ Params

Universidad de Cantabria 58

Mast2 Meta-model specification 31 de julio de 2015

o Period : Time [1] = MAXIMUM → Inherited from Virtual_Periodic_Replenishment_Params

• References: -

Class Virtual_Sporadic_Server_Params

• Semantics. The sporadic server allows any of its clients to use its resource any time until its budget
is exhausted. The sporadic server replenishes each portion of consumed budget one period after
the associated task was ready.

• Ancestors hierarchy:
Scheduling_Parameters.Resource_Reservation_Params.Virtual_Resource_Params.Virtual_Periodic
_Replenishment_Params

• Direct subclasses: -

• Attributes:

o Preassigned : Assertion [1] = No → Inherited from Resource_Reservation_Params

o Budget : Normalized_Execution_Time [1] = 0.0 → Inherited from Virtual_Periodic_
Replenishment_Params

o Deadline : Time [1] = MAXIMUM → Inherited from Virtual_Periodic_Replenishment_ Params

o Period : Time [1] = MAXIMUM → Inherited from Virtual_Periodic_Replenishment_Params

• References: -

<<abstract>> class Virtual_Comm_Channel_Params

• Semantics. Reservation of a communication channel contract for a network with Resource
Reservation policy. It represents a service contract that contains the information related to the
application minimum resource requirements.

• Ancestors hierarchy: Scheduling_Parameters.Resource_Reservation_Params

• Direct subclasses:

o Virtual_Periodic_Replenishment_Comm_Params
o Virtual_Tocken_Bucket_Comm_Channel

• Attributes:

o Preassigned : Assertion [1] = No → Inherited from Resource_Reservation_Params

• References: -

<<abstract>> class Virtual_Periodic_Replenisment_Comm_Params

• Semantics. The Virtual_Periodic_Reprenishment_Comm_Channel sends any message until its
capacity is exhausted. The server budget will be filled up according to a policy that depends on the
concrete class and depends on the period attribute. The Virtual communication channel guarantees

Universidad de Cantabria 59

Mast2 Meta-model specification 31 de julio de 2015

that a piece of message of size less than or equal to the minimum budget and requested for a
channel with full capacity at the start of the period will be completed by the channel’s deadline.

• Ancestors hierarchy:
Scheduling_Parameters.Resource_Reservation_Params.Virtual_Comm_Channel_Params

• Direct subclasses:

o Virtual_Periodic_Comm_Params
o Virtual_Deferrable_Comm_Params
o Virtual_Sporadic_Comm_Params

• Attributes:

o Preassigned : Assertion [1] = No → Inherited from Resource_Reservation_Params.

o Budget : Bit_Count [1] = 0 → Minimum transmission capacity per server period.

o Deadline : Time [1] = MAXIMUM → The server guarantees that a piece of message of size
less than or equal to the budget and requested for a server with full capacity at the start of
the period will be completed by the server’s deadline.

o Period : Time [1] = MAXIMUM → The period of the replenishment mechanism. The virtual
channel will guarantee that every period, the messages being sent through it will get, if they
are available at the start of the period, at least the minimum budget on the network to which
the associated schedulable resource is connected.

Class Virtual_Periodic_Comm_Params

• Semantics. The Virtual_Periodic_Comm_Channel sends any available message until its capacity is
exhausted. Once the server’s capacity is exhausted, the virtual communication channel suspends
transmission until its capacity is replenished at the start of its next period. Transmission on the
server may be delayed and or pre-empted by the transmission of other channels at higher priorities.
The Virtual communication channel guarantees that a piece of message of size less than or equal
to the minimum budget and requested for a channel with full capacity at the start of the period will
be completed by the channel’s deadline. The release jitter of the Virtual_Periodic_Comm_Channel
is assumed to be zero.

• Ancestors hierarchy:
Scheduling_Parameters.Resource_Reservation_Params.Virtual_Comm_Channel_Params.Virtual_P
eriodic_Replenishment_Comm_Params

• Direct subclasses: -

• Attributes:

o Preassigned : Assertion [1] = No → Inherited from Resource_Reservation_Params

o Budget : Normalized_Execution_Time = 0.0 → Inherited from Virtual_Periodic_
Replenishment_Comm_Params

Universidad de Cantabria 60

Mast2 Meta-model specification 31 de julio de 2015

o Deadline : Time = MAXIMUM → Inherited from Virtual_Periodic_Replenishment_
Comm_Params.

o Period : Time = MAXIMUM → Inherited from Virtual_Periodic_Replenishment_
Comm_Params

Class Virtual_Deferrable_Comm_Params

• Semantics. The Virtual_Deferrable_Comm_Channel allows any of its clients to transmit any bits
within the period, until its budget is exhausted. The channel budget will be filled up periodically
with the specified period. The budget cannot be saved for future use, which means that any
unclaimed budget left from the previous replenishment is always thrown away at the next
replenishment.

• Ancestors hierarchy:
Scheduling_Parameters.Resource_Reservation_Params..Virtual_Comm_Channel_Params.Virtual_
Periodic_Replenishment_Comm_Params

• Direct subclasses: -

• Attributes:

o Preassigned : Assertion [1] = No → Inherited from Resource_Reservation_Params

o Budget : Normalized_Execution_Time [1] = 0.0 → Inherited from Virtual_Periodic_
Replenishment_Comm_Params.

o Deadline : Time [1] = MAXIMUM → Inherited from Virtual_Periodic_Replenishment_
Comm_Params.

o Period : Time [1] = MAXIMUM → Inherited from Virtual_Periodic_Replenishment_
Comm_Params.

Class Virtual_Sporadic_Comm_Params

• Semantics. The sporadic server allows any of its clients to use its resource any time until its budget
is exhausted. The sporadic server replenishes each portion of consumed budget one period after
the associated task was ready. The Virtual_Sporadic_Comm_Server transmits available messages
until its budget is exhausted. The sporadic channel replenishes each portion of consumed budget
one period after the associated messages were available for transmission.

• Ancestors hierarchy:
Scheduling_Parameters.Resource_Reservation_Params.Virtual_Comm_Channel_Params.Virtual_P
eriodic_Replenishment_Comm_Params

• Direct subclasses: -

• Attributes:

o Preassigned : Assertion [1] = No → Inherited from Resource_Reservation_Params.

Universidad de Cantabria 61

Mast2 Meta-model specification 31 de julio de 2015

o Budget : Normalized_Execution_Time [1] = 0.0 → Inherited from Virtual_Periodic_
Replenishment_Comm_Params.

o Deadline : Time = MAXIMUM → Inherited from Virtual_Periodic_Replenishment_
Comm_Params.

o Period : Time = MAXIMUM → Inherited from Virtual_Periodic_Replenishment_
Comm_Params.

• References: -

Class Virtual_Token_Bucket_Comm_Params

• Semantics. The token bucket is a control mechanism that dictates when traffic can be transmitted,
based on the presence of tokens in the bucket. The algorithm can be conceptually understood as
follows :

- A token is added to the bucket every 1 / Max_Throughput seconds.
- The bucket can hold at the most budget tokens. If a token arrives when the bucket is full, it

is discarded.
 - When a packet of n bits arrives, n tokens are removed from the bucket, and the packet is

sent to the network.
- If fewer than n tokens are available, no tokens are removed from the bucket, and the packet

is enqueued for subsequent transmission when sufficient tokens have accumulated in the
bucket.

• Ancestors hierarchy:
Scheduling_Parameters.Resource_Reservation_Params.Virtual_Comm_Channel_Params

• Direct subclasses: -

• Attributes:

o Preassigned : Assertion [1] = No → Inherited from Resource_Reservation_Params

o Budget : Bit_Count [1] = 0 → The maximum number of tokens in the bucket.

o Max_Throughput : Throughput [1] = MAXIMUM → The rate of token flow in the bucket, or
the average flow of bits in the channel.

Universidad de Cantabria 62

Mast2 Meta-model specification 31 de julio de 2015

4.4.1.4 TIMETABLE DRIVEN SCHEDULING PARAMETERS

Figure 19 – Hierarchy of timetable-driven scheduling parameters

<<abstract>> class Timetable_Driven_Params

• Semantics. These scheduling parameters are only applicable to schedulers with the
Timetable_Driven_Policy.

• Ancestors hierarchy: Scheduling_Parameters

• Direct subclasses:

o Partition_Params

• Attributes: -

• References: -

Class Partition_Params

• Semantics. Concrete scheduling parameters for a Timetable_Driven policy

• Ancestors hierarchy: Scheduling_Params.Timetable_Driven_Params

• Direct subclasses: -

• Attributes:

o Partition_Id : Natural [1] → Optimal identifier of the assigned partition.

o Partition_Name : Identifier [1] = null → Optional identifier that is used as the partition name,
for expressiveness purposes. Each partition name must correspond to a unique partition Id.

• References: -

Universidad de Cantabria 63

Mast2 Meta-model specification 31 de julio de 2015

4.4.1.5 AFDX VIRTUAL LINK SCHEDULING PARAMETERS

Figure 20 – AFDX scheduling parameters

Class AFDX_Virtual_Link

• Semantics. Concrete scheduling parameters for the AFDX_Policy

• Ancestors hierarchy: Scheduling_Parameters

• Direct subclasses: -

• Attributes:

o LMax : Bit_Count [1] = 0 → Maximum length of the packets sent through this virtual link.

o BAG : Time [1] = MAXIMUM → Bandwidth allocation gap. This is the minimum time that must
elapse between the transmission of two packets from this virtual link. It is constrained to
values representing intervals in milliseconds equal to a power of 2 value in the range {1,128].

• References: -

4.4.2 SYNCHRONIZATION PARAMETERS

Figure 21 – Hierarchy of synchronization parameters

<<abstract>> class Synchronization_Parameters

• Semantics. These parameters are attached to a schedulable resource to specify the parameters
used by that resource when performing a mutually exclusive access to shared resources using a
mutual exclusion resource. The synchronization parameters should be specified whenever the
scheduling policy is such that the given Scheduling Parameters do not have enough information for
the synchronization protocols used. For example, no synchronization parameters are needed for

Universidad de Cantabria 64

Mast2 Meta-model specification 31 de julio de 2015

the priority inheritance or immediate priority ceiling protocols, because the only information they
require from the server is its priority.

• Ancestors hierarchy:

• Direct subclasses:

o SRP_Params

• Attributes: -

• References: -

Class SRP_Params

• Semantics. It is associated with the synchronization protocol named Stack Resource Protocol.

• Ancestors hierarchy: Synchronization_Parameters

• Direct subclasses: -

• Attributes:

o Preemption_Level : Preemption_Level [1] = MINIMUM → A positive number that represents
the level of preemptability of the schedulable resource in relation to the mutual exclusion
resource. It must be within the valid ranges for the implementation

o Preassigned : Assertion [1] = No → If this parameter is set to the value “No”, the value of the
preemption level may be assigned by any of the specific design tools. Otherwise, it is fixed
and cannot be changed by those tools.

• References: -

Universidad de Cantabria 65

Mast2 Meta-model specification 31 de julio de 2015

Universidad de Cantabria 66

Mast2 Meta-model specification 31 de julio de 2015

4.5 MUTUAL EXCLUSION RESOURCES

Figure 22 – Hierarchy of mutual exclusion resources

<<abstract>> class Mutual_Exclusion_Resource

• Semantics. It models a resource that is shared among different threads or tasks, and that must be
used in a mutually exclusive way. Only protocols that avoid unbounded priority inversion are
allowed.

• Ancestors hierarchy: Model_Element

• Direct subclasses:

o Immediate_Ceiling_Mutex
o Priority_Inheritance_Mutex
o SRP_Mutex

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

Class Immediate_Ceiling_Mutex

• Semantics. Uses the immediate priority ceiling resource protocol. This is equivalent to Ada’s Priority
Ceiling, or the POSIX priority protect protocol.

• Ancestors hierarchy: Model_Element.Mutual_Exclusion_Resource

• Direct subclasses: -

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

o Ceiling : Priority [1] = MAXIMUM → Priority ceiling used for the resource. May be computed
automatically by the tool, upon request.

Universidad de Cantabria 67

Mast2 Meta-model specification 31 de julio de 2015

o Preassigned : Assertion [1] = No → If this parameter is set to the value “No”, the priority
ceiling may be assigned by the “Calculate Ceilings” tool. Otherwise, the priority ceiling is fixed
and cannot be changed by those tools.

Class Priority_Inheritance_Mutex

• Semantics. Uses the basic priority inheritance protocol.

• Ancestors hierarchy: Model_Element.Mutual_Exclusion_Resource

• Direct subclasses: -

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

Class SRP_Mutex

• Semantics. Uses the Stack Resource Protocol (SRP). This is similar to the immediate ceiling protocol
but works for non-priority-based policies.

• Ancestors hierarchy: Model_Element.Mutual_Exclusion_Resource

• Direct subclasses: -

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

o Preemption_Level : Preemption_Level [1] = MAXIMUM → Level of preemptability used for
the resource. May be computed automatically by the MAST tools, upon request.

o Preassigned : Assertion [1] = No → If this parameter is set to the value “No”, the preemption
level may be assigned by a tool. Otherwise, the preemption level is fixed and cannot be
changed by any tool.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

Universidad de Cantabria 68

Mast2 Meta-model specification 31 de julio de 2015

4.6 OPERATIONS

Figure 23 – Hierarchy of operations

<<abstract>> class Operation

• Semantics. It describes the processing capacity usage which is required for the execution of a piece
of code or for the transmission of a message.

• Ancestors hierarchy: Model_Element

• Direct subclasses:

o Code_Operation
o Message_Operation

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

<<abstract>> class Code_Operation

• Semantics. It describes the processing capacity usage, measured in normalized execution time,
which is required for the execution of a piece of code.

Universidad de Cantabria 69

Mast2 Meta-model specification 31 de julio de 2015

• Ancestors hierarchy: Model_Element.Operation

• Direct subclasses:

o Simple_Operation
o Composite_Operation

• Attributes:

o name : Identifier [1] → Inherited from Model_Element

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Aggregated> Overridden_Sched_Parameters : Overridden_Sched_Parameters [0 .. 1] →
Optional overridden scheduling parameters

Class Simple_Operation

• Semantics. It represents a simple piece of sequential code execution.

• Ancestors hierarchy: Model_Element.Operation.Code_Operation

• Direct subclasses: -

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

o Worst_Case_Execution_Time : Normalized_Execution_Time [1] = MAXIMUM → In
normalized units, it represents the maximum execution time of the code.

o Avg_Case_Execution_Time : Normalized_Execution_Time [1] = MAXIMUM → In normalized
units, it represents the average execution time of the code.

o Best_Case_Execution_Time : Normalized_Execution_Time [1] = 0.0 → In normalized units, it
represents the minimum execution time of the code.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Aggregated> Overridden_Sched_Parameters : Overridden_Sched_Parameters [0 .. 1] →
Inherited from Code_Operation.

o <Referenced> Mutex_List : Mutual_Exclusive_Resource [1 .. *] → List of references to the
mutual exclusion resources that must be locked before executing the operation, and
unlocked after executing the operation.

o <Referenced> Mutex_To_Lock_List : Mutual_Exclusive_Resource [1 .. *] → List of references
to the mutual exclusion resources that must be locked before executing the operation.

Universidad de Cantabria 70

Mast2 Meta-model specification 31 de julio de 2015

o <Referenced> Mutex_To_Unlock_List : Mutual_Exclusive_Resource [1 .. *] → List of
references to the mutual exclusion resources that must be unlocked after executing the
operation.

Class Composite_Operation

• Semantics. It represents an operation composed of an ordered sequence of other operations,
simple or composite. The execution time attribute of this class cannot be set, because it is the sum
of the execution times of the comprised operations.

• Ancestors hierarchy: Model_Element.Operation.Code_Operation

• Direct subclasses:

o Enclosing_Operation

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Aggregated> Overridden_Sched_Parameters : Overridden_Sched_Parameters [0 .. 1] →
Optional overridden scheduling parameters

o <Referenced> Operation_List : Code_Operation [1 .. *] → List of references to other
operations with which is built.

Class Enclosing_Operation

• Semantics. It represents an operation that contains other operations as part of its execution. The
execution time is not the sum of execution times of the comprised operations, because other pieces
of code may be executed in addition. The enclosed operations need to be considered for the
purpose of calculating the blocking times associated with their mutual exclusion resource usage.

• Ancestors hierarchy: Model_Element.Operation.Code_Operation.Composite_Operation

• Direct subclasses: -

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

o Worst_Case_Execution_Time : Normalized_Execution_Time [1] = MAXIMUM → In
normalized units, it represents the maximum execution time of the code.

o Avg_Case_Execution_Time : Normalized_Execution_Time [1] = MAXIMUM → In normalized
units, it represents the average execution time of the code.

o Best_Case_Execution_Time : Normalized_Execution_Time [1] = 0.0 → In normalized units, it
represents the minimum execution time of the code.

Universidad de Cantabria 71

Mast2 Meta-model specification 31 de julio de 2015

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Aggregated> Overridden_Sched_Parameters : Overridden_Sched_Parameters [0 .. 1] →
Inherited from Operation. Overridden parameters in enclosing operations take precedence
over the respective overridden parameters of the contained operations.

o <Referenced> Operation_List : Code_Operation [1 .. *] → Inherited from
Composite_Operation

<<abstract>> Class Message_Operation

• Semantics. It describes the processing capacity usage which is required for the transmission of a
message.

• Ancestors hierarchy: Model_Element.Operation

• Direct subclasses:

o Message
o Composite_Message

• Attributes:

o name : Identifier [1] → Inherited from Model_Element

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

Class Message

• Semantics. Represents a message to be transmitted through a network.

• Ancestors hierarchy: Model_Element.Operation.Message_Operation

• Direct subclasses: -

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

o Max_Message_Size : Bit_Count [1] = MAXIMUM → Maximum length of the message in
Bit_Count units. The transmission time is obtained by dividing the size by the Throughput and
by the Speed_Factor of the corresponding Network.

o Avg_Message_Size : Bit_Count [1] = MAXIMUM → Average length of the message in
Bit_Count units. The transmission time is obtained by dividing the size by the Throughput and
by the Speed_Factor of the corresponding Network.

o Min_Message_Size : Bit_Count [1] = 0 → Minimum length of the message in Bit_Count units.
The transmission time is obtained by dividing the size by the Throughput and by the
Speed_Factor of the corresponding Network.

Universidad de Cantabria 72

Mast2 Meta-model specification 31 de julio de 2015

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

Class Composite_Message

• Semantics. It represents a message composed of other messages, simple or composite, to be
transmitted through a network

• Ancestors hierarchy: Model_Element.Operation.Message_Operation

• Direct subclasses: -

• Attributes:

o name : Identifier [1] → Inherited from Model_Element

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Referenced> Message_List : Message_Operation [1 .. *] → List of references to other
messages with which is built.

4.6.1 Overriden scheduling parameters

Figure 24 – Hierarchy of overriden scheduling parameters

<<abstract>> class Overridden_Sched_Parameters

• Semantics. It models scheduling parameters defined in the code, which should be used by the
schedulable resource when executing the associated operation. Overridden parameters in
composite or enclosing operations take precedence over the respective overridden parameters of
the contained operations. The overridden parameters are set in the Schedulable_Resource before
it locks the Mutual_Exclusion_Resources referenced by the operation.

• Ancestors hierarchy:

• Direct subclasses:

o Overridden_Fixed_Priority
o Overridden_Permanent_FP
o Overridden_Deadline

• Attributes: -

Universidad de Cantabria 73

Mast2 Meta-model specification 31 de julio de 2015

• References: -

Class Overridden_Fixed_Priority

• Semantics. It represents a priority level that overrides the normal priority level at which the
operation would execute. The change of priority is in effect only until the operation is completed.

• Ancestors hierarchy: Overridden_Sched_Parameters

• Direct subclasses: -

• Attributes:

o Priority: Priority [1] = MAXIMUM → The overridden priority value.

• References: -

Class Overridden_Permanent_FP

• Semantics. It represents a priority level that overrides the normal priority level at which the
operation would execute. The change of priority is in effect until another operation with permanent
overridden priority starts, or until the end of the segment of activities (a segment is a contiguous
sequence of operations executed by the same schedulable resource).

• Ancestors hierarchy: Overridden_Sched_Parameters

• Direct subclasses: -

• Attributes:

o Priority : Priority [1] = MAXIMUM → The overridden priority value.

• References: -

Class Overridden_EDF

• Semantics. It represents a relative deadline that overrides the normal scheduling deadline at which
the operation would execute. The change of scheduling deadline is in effect only until the operation
is completed.

• Ancestors hierarchy: Overridden_Sched_Parameters

• Direct subclasses: -

• Attributes:

o Deadline : Time [1] = MAXIMUM → The overridden relative deadline value.

• References: -

Universidad de Cantabria 74

Mast2 Meta-model specification 31 de julio de 2015

4.7 END-TO-END FLOWS

Figure 25 – End-to-end flow transaction model

<<abstract>> class End_To_End_Flow

• Semantics. It represents the set of activities and actions executed in the system in response to a
workload event or an event arrival pattern. It is described as a graph with three different element
types :

A list of workload events,

A list of internal events, with their timing requirements if any,

A list of event handlers.
• Ancestors hierarchy: Model_Element

• Direct subclasses:

o Regular_End_To_End_Flow

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Aggregated> Flow_Element_List : Flow_Element [1 .. *] → List of instances that comprise
an end-to-end flow transaction, i.e. events (external, generated by the environment or by a
timer as well as internal ones) and event handlers.

Class Regular_End_To_End_Flow

Universidad de Cantabria 75

Mast2 Meta-model specification 31 de julio de 2015

• Semantics. Concrete end-to-end-flow.

• Ancestors hierarchy: Model_Element.End_To_End_Flow

• Direct subclasses: -

• Attributes:

o name : Identifier [1] → Inherited from Model_Element.

• References:

o <Referenced> Container : Mast_Container [1] → Inherited from Model_Element

o <Aggregated> Flow_Element_List : Flow_Element [1 .. *] → Inherited from
End_To_End_Flow.

<<abstract>> class Flow_Element

• Semantics. It is the common ancestor of the classes which instances comprise an end-to-end flow
transaction, i.e. events and event handlers.

• Ancestors hierarchy: -

• Direct subclasses:

o Event
o Event_Handler

• Attributes: -

• References:

o <Referenced> Owner : End_To_End_Flow [1] → The end-to-end flow transaction to which
the element belongs to.

<<abstract>> class Event_Handler

• Semantics. Event handlers represent actions that are activated by the arrival of one or more events,
and that in turn generate one or more events at their output. There are two fundamental classes
of event handlers. The Steps represent the execution of an operation by a schedulable resource, in
a processing resource, and with some given scheduling parameters. The other event handlers are
just a mechanism for handling events, with no runtime effects.

• Ancestors hierarchy: Flow_Element

• Direct subclasses:

o Step
o Delay
o Offset
o Rate_Divisor
o Fork

Universidad de Cantabria 76

Mast2 Meta-model specification 31 de julio de 2015

o Join
o Merge
o Branch
o Queried_Branch
o Message_Event_Handler

• Attributes: -

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

<<abstract>> class Event

• Semantics. It represents an event stream containing a potentially infinite number of individual
event instances. Each event instance activates an instance of a step, or influences the behaviour of
the event handler to which it is directed. Events may be internal or workload events generated by
a clock or by the environment.

• Ancestors hierarchy: Flow_Element

• Direct subclasses:

o Internal_Event
o Workload_Event

• Attributes:

o name : Identifier [1] → Name of the event

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

Class Internal_Event

• Semantics. They are generated by an event handler.

• Ancestors hierarchy: Flow_Element.Event

• Direct subclasses: -

• Attributes:

o name : Identifier [1] → Inherited from Event.

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

o <Aggregated> Observer_List : Observer [*] → List of requirements associated to the event,
to be observed.

Universidad de Cantabria 77

Mast2 Meta-model specification 31 de julio de 2015

<<abstract>> class Workload_Event

• Semantics. It represents a stream of events that are generated by the environment or by a system
clock or a timer. The Timed Events have a reference to the timer.

• Ancestors hierarchy: Flow_Element.Event

• Direct subclasses:

o Timed_Event
o Sporadic_Event
o Unbounded_Event
o Bursty_Event

• Attributes:

o name : Identifier [1] → Inherited from Event

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

<<abstract>> class Observer

• Semantics. It represents non-functional requirements associated to an internal event. The analysis
tools will observe whether the requirement is satisfied or not.

• Ancestors hierarchy:

• Direct subclasses:

o Timing_Requirement
o Queue_Size_Req
o Composite_Observer

• Attributes: -

• References:

o <Referenced> Owner_IE : Internal_Event [0 .. 1] → A reference to the internal event to which
the observer is assigned, in case it is not included within a composite observer.

o <Referenced> Owner_CO : Observer [0 .. 1] → A reference to the parent observer in which
the observer is included.

Universidad de Cantabria 78

Mast2 Meta-model specification 31 de julio de 2015

4.7.1 WORKLOAD EVENTS

Figure 26 – Hierarchy of workload events

<<abstract>> class Timed_Event

• Semantics. Events generated by a timer, either implicit or explicit.

• Ancestors hierarchy: Flow_Element.Event.Workload_Event

• Direct subclasses:

o Singular_Event
o Periodic_Event

• Attributes:

o name : Identifier [1] → Inherited from Event.

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

o <Referenced> Timer : Timer [0 .. 1] → It references the timer that generates the event. If it
is null the event is generated by the environment though an implicit timer with no overhead.

Class Singular_Event

• Semantics. It represents an event that is generated only once.

• Ancestors hierarchy: Flow_Element.Event.Workload_Event.Timed_Event

• Direct subclasses: -

• Attributes:

Universidad de Cantabria 79

Mast2 Meta-model specification 31 de julio de 2015

o name : Identifier [1] → Inherited from Event.

o Phase : Absolute_Time [1] = 0.0 → It is the instant of the activation.

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

o <Referenced> Timer : Timer [0 .. 1] → Inherited from Timed_Event.

Class Periodic_Event

• Semantics. It represents a stream of events that are generated periodically.

• Ancestors hierarchy: Flow_Element.Event.Workload_Even.Timed_Event

• Direct subclasses: -

• Attributes:

o name : Identifier [1] → Inherited from Event.

o Period : Time [1] = 0.0 → Event period.

o Phase : Absolute_Time [1] = 0.0 → It is the instant of the activation, if it had no jitter. After
that time, the following events are periodic (possibly with jitter).

o Max_Jitter : Time [1] = 0.0 → The event jitter is an amount of time that may be added to the
activation time of each event instance, and is bounded by the maximum jitter attribute. It
influences the schedulability of the system.

o Synchronized : Assertion [0 .. 1] = NO → It describes whether or not the event is synchronized
with the partition table (in case of Timetable-driven policies) or with the virtual resource
activation (in resource reservation policies). In Timetable-driven policies synchronized events
are restricted to being exact multiples or submultiples of the MAF whereas in resource
reservation policies they are restricted to being exact multiples or submultiples of the virtual
resource period.

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

o <Referenced> Timer : Timer [0 .. 1] → Inherited from Timed_Event.

Enumeration Distribution_Type

• Semantics. It represents the distribution function of aperiodic events. It can be UNIFORM or
POISSON.

• Values :

o UNIFORM → The distribution function is uniform.

o POISSON → The distribution function is of the Poisson type.

Universidad de Cantabria 80

Mast2 Meta-model specification 31 de julio de 2015

Class Sporadic_Event

• Semantics. It represents a stream of aperiodic events that have a minimum interarrival time.

• Ancestors hierarchy: Flow_Element.Event.Workload_Event

• Direct subclasses: -

• Attributes:

o name : Identifier [1] → Inherited from Event.

o Avg_Interarrival : Time [1] = 0.0 → Average interarrival time.

o Min_Interarrival : Time [1] = 0.0 → Minimum time between the generation of two events.

o Distribution : Distribution_Type [1] = UNIFORM → It represents the distribution function of
the aperiodic events.

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

Class Unbounded_Event

• Semantics. It represents a stream of aperiodic events for which it is not possible to establish an
upper bound on the number of events that may arrive in a given interval.

• Ancestors hierarchy: Flow_Element.Event.Workload_Event

• Direct subclasses: -

• Attributes:

o name : Identifier [1] → Inherited from Event.

o Avg_Interarrival : Time [1] = 0.0 → Average interarrival time.

o Distribution : Distribution_Type [1] = UNIFORM → It represents the distribution function of
the aperiodic events.

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

Class Bursty_Event

• Semantics. It represents a stream of aperiodic events that have an upper bound on the number of
events that may arrive in a given interval. Within this interval, events may arrive with an arbitrarily
low distance among them (perhaps as a burst of events).

• Ancestors hierarchy: Flow_Element.Event.Workload_Event

• Direct subclasses: -

• Attributes:

Universidad de Cantabria 81

Mast2 Meta-model specification 31 de julio de 2015

o name : Identifier [1] → Inherited from Event.

o Bound_Interval : Time [1] = 0.0 → Interval for which the amount of event arrivals is bounded.

o Max_Arrivals : Positive [1] = 1 → Maximum number of events that may arrive in the
Bound_Interval.

o Avg_Interarrival :Time [1] = 0.0 → Average interarrival time.

o Distribution : Distribution_Type [1] = UNIFORM → It represents the distribution function of
the aperiodic events.

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

4.7.2 OBSERVERS

Figure 27 – Hierarchy of observers

Class Queue_Size_Req

• Semantics. It represents a requirement imposed on the maximum number of event instances that
may be queued. It is used for internal events that activate a Step and, therefore, it represents the
maximum number of pending activations of that Step.

Universidad de Cantabria 82

Mast2 Meta-model specification 31 de julio de 2015

• Ancestors hierarchy: Observer

• Direct subclasses: -

• Attributes:

o Max_Events : Natural [1] = 0 → Maximum number of queued event instances that are
admitted.

• References:

o <Referenced> Owner_IE : Internal_Event [0 .. 1] → Inherited from Observer

o <Referenced> Owner_CO : Observer [0 .. 1] → Inherited from Observer

<<abstract>> class Timing_Requirement

• Semantics. It represents requirements imposed on the instant of generation of the associated
internal event.

• Ancestors hierarchy: Observer

• Direct subclasses:

o Deadline_Req
o Max_Output_Jitter_Req
o Max_Miss_Ratio_Req

• Attributes: -

• References:

o <Referenced> Owner_IE : Internal_Event [0 .. 1] → Inherited from Observer

o <Referenced> Owner_CO : Observer [0 .. 1] → Inherited from Observer

<<abstract>> class Deadline_Req

• Semantics. It represents a requirement imposed on the maximum time value allowed for the
generation of the associated event. It is expressed as a relative time interval relative to the
generation of another event.

• Ancestors hierarchy: Observer.Timing_Requirement

• Direct subclasses:

o Hard_Global_Deadline
o Hard_Local_Deadline
o Soft_Global_Deadline
o Soft_Local_Deadline

• Attributes:

o Deadline : Time [1] = 0.0 → The deadline value.

Universidad de Cantabria 83

Mast2 Meta-model specification 31 de julio de 2015

• References:

o <Referenced> Owner_IE : Internal_Event [0 .. 1] → Inherited from Observer

o <Referenced> Owner_CO : Observer [0 .. 1] → Inherited from Observer

Class Hard_Global_Deadline

• Semantics. As global, the deadline is relative to the workload event that activates the current
execution. Specifically the deadline is relative to the exact generation time of the workload event
(without taking into account the jitter). As hard, it must be met in all cases, including the worst
case.

• Ancestors hierarchy: Observer.Timing_Requirement.Deadline_Req

• Direct subclasses:

o Hard_Global_Relative_Deadline

• Attributes:

o Deadline : Time [1] = 0.0 → Inherited from Deadline_Req

• References:

o <Referenced> Owner_IE : Internal_Event [0 .. 1] → Inherited from Observer

o <Referenced> Owner_CO : Observer [0 .. 1] → Inherited from Observer

o <Referenced> Referenced_Event : Workload_Event [1] → Workload event used as the time
reference for the deadline.

Class Hard_Global_Relative_Deadline

• Semantics. As global, the deadline is relative to the workload event that activates the current
execution. In this case the deadline is relative to the real generation time of the workload event
(i.e. exact generation time + jitter). As hard, it must be met in all cases, including the worst case.

• Ancestors hierarchy: Observer.Timing_Requirement.Deadline_Req.Hard_Global_Deadline

• Attributes:

o Deadline : Time [1] = 0.0 → Inherited from Deadline_Req.

• Direct subclasses: -

• References:

o <Referenced> Owner_IE : Internal_Event [0 .. 1] → Inherited from Observer

o <Referenced> Owner_CO : Observer [0 .. 1] → Inherited from Observer

o <Referenced> Referenced_Event : Workload_Event [1] → Inherited from
Hard_Global_Deadline.

Universidad de Cantabria 84

Mast2 Meta-model specification 31 de julio de 2015

Class Hard_Local_Deadline

• Semantics. As local, it appears associated with the output event of a segment (see Section II.7.3 for
the definition of segment) and the deadline is relative to the arrival of the event that activated that
segment. As hard, it must be met in all cases, including the worst case.

• Ancestors hierarchy: Observer.Timing_Requirement.Deadline_Req

• Direct subclasses: -

• Attributes:

o Deadline : Time [1] = 0.0 → Inherited from Deadline_Req.

• References:

o <Referenced> Owner_IE : Internal_Event [0 .. 1] → Inherited from Observer

o <Referenced> Owner_CO : Observer [0 .. 1] → Inherited from Observer

Class Soft_Global_Deadline

• Semantics. As global, the deadline is relative to a workload event that activates the current
execution. As soft, it must be met on average.

• Ancestors hierarchy: Observer.Timing_Requirement.Deadline_Req

• Direct subclasses:

o Soft_Global_Relative_Deadline

• Attributes:

o Deadline : Time [1] = 0.0 → Inherited from Deadline_Req.

• References:

o <Referenced> Owner_IE : Internal_Event [0 .. 1] → Inherited from Observer

o <Referenced> Owner_CO : Observer [0 .. 1] → Inherited from Observer

o <Referenced> Referenced_Event : Workload_Event [1] → Workload event used as the time
reference for the deadline.

Class Soft_Global_Relative_Deadline

• Semantics. As global, the deadline is relative to the workload event that activates the current
execution. In this case the deadline is relative to the real generation time of the workload event
(i.e. exact generation time + jitter). As soft, it must be met on average.

• Ancestors hierarchy: Observer.Timing_Requirement.Deadline_Req.Soft_Global_Deadline

• Direct subclasses: -

• Attributes:

Universidad de Cantabria 85

Mast2 Meta-model specification 31 de julio de 2015

o Deadline : Time [1] = 0.0 → Inherited from Deadline_Req.

• References:

o <Referenced> Owner_IE : Internal_Event [0 .. 1] → Inherited from Observer

o <Referenced> Owner_CO : Observer [0 .. 1] → Inherited from Observer

o <Referenced> Referenced_Event : Workload_Event [1] → Inherited from
Soft_Global_Deadline.

Class Soft_Local_Deadline

• Semantics. As local, it appears associated with the output event of a segment (see Section II.7.3 for
the definition of segment); the deadline is relative to the arrival of the event that activated that
segment. As soft, it must be met on average.

• Ancestors hierarchy: Observer.Timing_Requirement.Deadline_Req

• Direct subclasses: -

• Attributes:

o Deadline : Time [1] = 0.0 → Inherited from Deadline_Req.

• References:

o <Referenced> Owner_IE : Internal_Event [0 .. 1] → Inherited from Observer

o <Referenced> Owner_CO : Observer [0 .. 1] → Inherited from Observer

Class Max_Output_Jitter_Req

• Semantics. It represents a requirement for limiting the output jitter with which the associated
periodic internal event is generated. Output jitter is calculated as the difference between the
worst-case response time and the best-case response time for the associated event, relative to a
Referenced Event that is an attribute of this requirement.

• Ancestors hierarchy: Observer.Timing_Requirement

• Direct subclasses: -

• Attributes:

o Max_Output_Jitter : Time [1] = 0.0 → Maximum jitter required.

• References:

o <Referenced> Owner_IE : Internal_Event [0 .. 1] → Inherited from Observer

o <Referenced> Owner_CO : Observer [0 .. 1] → Inherited from Observer

o <Referenced> Referenced_Event : Workload_Event [1] → Workload event used as the time
reference for the deadline.

Universidad de Cantabria 86

Mast2 Meta-model specification 31 de julio de 2015

<<abstract>> class Max_Miss_Ratio_Req

• Semantics. It represents a kind of soft deadline in which the deadline cannot be missed more often
than a specified ratio.

• Ancestors hierarchy: Observer.Timing_Requirement

• Direct subclasses:

o Global_Max_Miss_Ratio
o Local_Max_Miss_Ratio

• Attributes:

o Deadline : Time [1] = 0.0 → The deadline value.

o Ratio : Percentage = 5.0 → Percentage representing the maximum ratio of missed deadlines.

• References:

o <Referenced> Owner_IE : Internal_Event [0 .. 1] → Inherited from Observer

o <Referenced> Owner_CO : Observer [0 .. 1] → Inherited from Observer

Class Global_Max_Miss_Ratio

• Semantics. Concrete Max_Miss_Ratio_Req, in which the deadline is relative to the Referenced
Event.

• Ancestors hierarchy: Observer.Timing_Requirement.Max_Miss_Ratio_Req

• Direct subclasses: -

• Attributes:

o Deadline : Time [1] = 0.0 → Inherited from Max_Miss_Ratio_Req.

o Ratio : Percentage [1] = 5.0 → Inherited from Max_Miss_Ratio_Req.

• References:

• References:

o <Referenced> Owner_IE : Internal_Event [0 .. 1] → Inherited from Observer

o <Referenced> Owner_CO : Observer [0 .. 1] → Inherited from Observer

o <Referenced> Referenced_Event : Workload_Event [1] → Workload event that is used as the
reference for the deadline.

Class Local_Max_Miss_Ratio

• Semantics. Concrete Max_Miss_Ratio_Req, in which the deadline is relative to the activation of the
step to which the timing requirement is attached.

• Ancestors hierarchy: Observer.Timing_Requirement.Max_Miss_Ratio_Req

Universidad de Cantabria 87

Mast2 Meta-model specification 31 de julio de 2015

• Direct subclasses: -

• Attributes:

o Deadline : Time [1] = 0.0 → Inherited from Max_Miss_Ratio_Req.

o Ratio : Percentage [1] = 5.0 → Inherited from Max_Miss_Ratio_Req

• References:

o <Referenced> Owner_IE : Internal_Event [0 .. 1] → Inherited from Observer

o <Referenced> Owner_CO : Observer [0 .. 1] → Inherited from Observer

Class Composite_Observer

• Semantics. An internal event may have several requirements imposed at the same time, which are
expressed via a composite observer. It is just a list of simple observers, i.e., non-composite
observers.

• Ancestors hierarchy: Observer.

• Direct subclasses: -

• Attributes: -

• References:

• References:

o <Referenced> Owner_IE : Internal_Event [0 .. 1] → Inherited from Observer

o < Referenced> Owner_CO : Observer [0 .. 1] → Inherited from Observer

o <Aggregated> Observer_List : Observer [1 .. *] → List of simple observers.

4.7.3 STEP EVENT HANDLER

Figure 28 – The Step event handler

Universidad de Cantabria 88

Mast2 Meta-model specification 31 de julio de 2015

Class Step

• Semantics. It represents the execution of an operation by a schedulable resource, in a processing
resource, and with some given scheduling parameters.

• Ancestors hierarchy: Flow_Element.Event_Handler

• Direct subclasses: -

• Attributes:

o Hold_Schedulable_Resource : Assertion [1] = Yes → If this attribute is set, the thread used
by the step is not released at the end of the execution of the step operation. The thread is
held until the next step in which the attribute is set to "NO" or until the end-to-end flow is
finished. This attribute only has effect for schedulable resources of the Thread class. The
default value is NO.

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

o <Referenced> Step_Schedulable_Resource : Schedulable_Resource [1] → Reference to the
schedulable resource (which in turn contains references to the scheduling parameters and
the processing resource)

o <Referenced> Step_Operation : Operation [1] → It references the operation.

o <Referenced> Input_Event : Event [1] → It references the event that activates the execution
of the step

o <Referenced> Output_Event : Internal_Event [1] → It references the internal event that is
generated when the step is finished.

Note : The concept of segment of step, used in several parts of the metamodel, is explained here. A
segment is a contiguous set of steps executed by the same schedulable resource.

4.7.4 TIMED EVENT HANDLERS

Figure 29 – The timed event handlers (Delay and Offset)

Universidad de Cantabria 89

Mast2 Meta-model specification 31 de julio de 2015

Class Delay

• Semantics. It is an event handler that generates its output event after a time interval has elapsed
from the arrival of the input even. Note that the time intervals for different event instances are
independently computed, even if they overlap. The delay may be handled by a Timer or by the
environment (when the Timer reference is null).

• Ancestors hierarchy: Flow_Element.Event_Handler

• Direct subclasses:

o Offset

• Attributes:

o Delay_Max_Interval : Time [1] = 0.0 → Longest time interval used to generate the output
event.

o Delay_Avg_Interval : Time [1] = 0.0 → Average time interval used to generate the output
event.

o Delay_Min_Interval : Time [1] = 0.0 → Shortest time interval used to generate the output
event.

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

o <Referenced> Input_Event : Event [1] → It references the event that activates the step.

o <Referenced> Output_Event : Internal_Event [1] → It references the internal event that is
generated when the step is finished.

o <Referenced> Timer : Timer [0 .. 1] → Reference to the timer, used when the delay has an
overhead that must be modeled. The default is NULL, indicating that the overhead associated
to the delay operation is negligible.

Class Offset

• Semantics. It is similar to the Delay event handler, except that the time interval is counted relative
to the arrival of some (previous) workload event. If the time interval has already passed when the
input event arrives, the output event is generated immediately.

• Ancestors hierarchy: Flow_Element.Event_Handler.Delay

• Direct subclasses: -

• Attributes:

o Delay_Max_Interval : Time [1] = 0.0 → Inherited from Delay

o Delay_Avg_Interval : Time [1] = 0.0 → Inherited from Delay

o Delay_Min_Interval : Time [1] = 0.0 → Inherited from Delay

Universidad de Cantabria 90

Mast2 Meta-model specification 31 de julio de 2015

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

o <Referenced> Input_Event : Event [1] → Inherited from Delay.

o <Referenced> Output_Event : Internal_Event [1] → Inherited from Delay

o <Referenced> Timer : Timer [0 .. 1] → Inherited from Delay.

o <Referenced> Referenced_Event :Workload_Event [1] → Reference to the workload event
that is used as temporal reference.

4.7.5 FLOW CONTROL EVENT HANDLERS

Figure 30 – The flow control event handlers

Universidad de Cantabria 91

Mast2 Meta-model specification 31 de julio de 2015

Class Rate_Divisor

• Semantics. It is an event handler that generates one output event when a number of input events
equal to the Rate Factor have arrived.

• Ancestors hierarchy: Flow_Element.Event_Handler

• Direct subclasses: -

• Attributes:

o Rate_Factor : Positive [1] = 1 → Number of events that must arrive to generate an output
event.

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

o <Referenced> Input_Event : Event [1] → It references the input event for the event handler.

o <Referenced> Output_Event : Internal_Event [1] → It references the internal event that is
generated as output.

Class Fork

• Semantics. It is an event handler that generates one event in each of its outputs each time an input
event arrives. If the step previous to the fork handler has a “YES” value assigned to its
Hold_Schedulable_Resource attribute, only one of the output paths following the fork handler can
have Steps assigned to the same Schedulable_Resource as that step. The schedulable resource is
unlocked when one of those Steps has a “No” value assigned to its Hold_Schedulable_Resource
attribute, or when the corresponding output path terminates.

• Ancestors hierarchy: Flow_Element.Event_Handler

• Direct subclasses: -

• Attributes: -

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

o <Referenced> Input_Event : Event [1] → It references the input event the event handler.

o <Referenced> Output_Event_List : Internal_Event [1 .. *] → List of references to the output
events.

Class Join

• Semantics. It is an event handler that generates its output event when all of its input events have
arrived. For worst-case analysis to be possible it is necessary that all the input events are periodic
with the same periods. This usually represents no problem if the event handler is used to perform
a “join” operation after a “fork” operation carried out with the Fork event handler. When the EDF

Universidad de Cantabria 92

Mast2 Meta-model specification 31 de julio de 2015

scheduling policy is being used, the generation time of the event used to obtain the absolute
deadlines is set to the most recent of the generation times of the input event instances.

• Ancestors hierarchy: Flow_Element.Event_Handler

• Direct subclasses: -

• Attributes: -

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

o <Referenced> Input_Event_List : Event [1 .. *] → List of references to the input events.

o <Referenced> Output_Event : Internal_Event [1] → It references the event that is generated
as output.

Class Merge

• Semantics. It is an event handler that generates its output event every time one of its input events
arrives. When several pending event instances are queued in the Merge output, the policy assigned
to the Event_Queueing_Policy attribute of the MAST_Model is used to determine which request
must be processed first by the following step.

• Ancestors hierarchy: Flow_Element.Event_Handler

• Direct subclasses: -

• Attributes: -

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

o <Referenced> Input_Event_List : Event [1 .. *] → List of references to input events.

o <Referenced> Output_Event : Internal_Event [1] → It references the internal event that is
generated as output.

Enumeration Delivery_Policy_Type

• Semantics. It is the policy used to determine the output path. It may be Scan (the output path is
chosen in a cyclic fashion) or Random.

• Values:

o SCAN → The output events are delivered to the outputs in a cyclic fashion.

o RANDOM → The output events are delivered randomly.

Universidad de Cantabria 93

Mast2 Meta-model specification 31 de julio de 2015

Class Branch

• Semantics. It is an event handler that generates one event in only one of its outputs each time an
input event arrives. The output path is chosen at the time of the event generation.

• Ancestors hierarchy: Flow_Element.Event_Handler

• Direct subclasses: -

• Attributes:

o Delivery_Policy :Delivery_Policy_Type : RANDOM [1] → The policy used to determine the
output path.

o Output_Weight_List : Float [1 .. *] → List of weights for each output. For a RANDOM policy,
if the weights are w1, w2, …, wi, the probability of choosing a particular output j is wj/wT,
where wT is the total weight, wT = w1+w2+…+wi If policy is SCAN, the weight must be integer;
if the weigths for this case are w1, w2, …, wi, the first w1 events will be directed through the
first output, the next w2 events through the second output, and so on. The default value for
the weight of each output is 1.

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

o <Referenced> Input_Event : Event [1] → Reference to the input event.

o <Referenced> Output_Event_List : Internal_Event [1 .. *] → List of references to the output
events.

Enumeration Request_Policy_Type

• Semantics. Is the policy used to determine the output path when there are several pending
requests from the connected activities. It may be SCAN (the output path is chosen in a cyclic
fashion), RANDOM, FIFO or LIFO.

• Values:

o SCAN → The output events are delivered in a cyclic fashion.

o RANDOM → The output events are delivered randomly.

o FIFO → The output events are delivered with a FIFO policy.

o LIFO → The output events are delivered with a LIFO policy.

Class Queried_Branch

• Semantics. It is an event handler that generates one event in only one of its outputs each time an
input event arrives. The output path is chosen at the time of the event consumption by one of the
Steps connected to an output event.

• Ancestors hierarchy: Flow_Element.Event_Handler

Universidad de Cantabria 94

Mast2 Meta-model specification 31 de julio de 2015

• Direct subclasses: -

• Attributes:

o Request_Policy : Request_Policy_Type : SCAN → The policy used to determine the output
path when there are several pending requests from the connected steps.

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

o <Referenced> Input_Event : Event [1] → Reference to the input event.

o <Referenced> Output_Event_List : Event [1 .. *] → List of references to the output events

4.7.6 MESSAGE EVENT HANDLERS

Figure 31 – The message flow event handlers

<<abstract>> class Message_Event_Handler

• Semantics. Event_Handler that handles the messages in switches and routers.

• Ancestors hierarchy: Flow_Element.Event_Handler

• Direct subclasses:

o Message_Fork
o Message_Delivery

Universidad de Cantabria 95

Mast2 Meta-model specification 31 de julio de 2015

o Message_Branch

• Attributes: -

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

o <Referenced> Switch : Network_Switch [1] → Reference to the switch in which the transfer
is executed.

Class Message_Fork

• Semantics. An input message is transmitted through several output networks; it is a multicast
operation.

• Ancestors hierarchy: Flow_Element.Event_Handler.Message_Event_Handler

• Direct subclasses: -

• Attributes: -

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

o <Referenced> Switch : Switch_Network [1] → Inherited from Message_Event_Handler.

o <Referenced> Input_Event : Event [1] → Reference to the input event

o <Referenced> Output_Event_List : Internal_Event [1 .. *] → List of references to the output
events.

Class Message_Delivery

• Semantics. It represents an input message that is delivered to one output network.

• Ancestors hierarchy: Flow_Element.Event_Handler.Message_Event_Handler

• Direct subclasses: -

• Attributes: -

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

o <Referenced> Switch : Network_Switch [1] → Inherited from Message_Event_Handler.

o <Referenced> Input_Event : Event [1] → Reference to the input event

o <Referenced> Output_Event : Internal_Event [1] → Reference to the output event.

Universidad de Cantabria 96

Mast2 Meta-model specification 31 de julio de 2015

Class Message_Branch

• Semantics. It is an event handler that models the management of messages in a router. It generates
one event in only one of its outputs each time an input event arrives. The output path is chosen at
the time of the event generation.

• Ancestors hierarchy: Flow_Element.Event_Handler.Message_Event_Handler

• Direct subclasses: -

• Attributes:

o Delivery_Policy : Delivery_Policy_Type [1] = SCAN → The policy used to determine the output
path.

o Output_Weight_List : Float [1 .. *] → List of weights for each output. For a RANDOM policy,
if the weights are w1, w2, …, wi, the probability of choosing a particular output j is wj/wT,
where wT is the total weight, wT = w1+w2+…+wi. If policy is SCAN, the weight must be
integer; if the weigths for this case are w1, w2, …, wi, the first w1 events will be directed
through the first output, the next w2 events through the second output, and so on. The
default value for the weight of each output is 1.

• References:

o <Referenced> Owner : End_To_End_Flow [1] → Inherited from Flow_Element

o <Referenced> Switch : Network_Router → It references the router in which the branching is
executed. It is a specialized reference to the switch reference inherited from
Message_Event_Handler.

o <Referenced> Input_Event : Event [1] → Reference to the input event

o <Referenced> Output_Event_List : Internal_Event [1 .. *] → List of references to the output
events.

Universidad de Cantabria 97

	1 MAST2 meta-model
	2 MAST2 primitive types
	3 MAST2 core classes
	4 MAST2 model elements
	4.1 PROCESSING RESOURCES
	4.1.1 COMPUTING RESOURCES
	4.1.2 NETWORKS
	4.1.2.1 DRIVERS

	4.1.3 NETWORK SWITCHES AND NETWORK ROUTERS

	4.2 TIMERS AND SYNCHRONIZATION OBJECTS
	4.3 SCHEDULERS
	4.3.1 SCHEDULING POLICIES

	4.4 SCHEDULABLE RESOURCES
	4.4.1 SCHEDULING PARAMETERS
	4.4.1.1 PRIORITY-BASED SCHEDULING PARAMETERS
	4.4.1.2 EDF SCHEDULING PARAMETERS
	4.4.1.3 RESOURCE RESERVATION SCHEDULING PARAMETERS
	4.4.1.4 TIMETABLE DRIVEN SCHEDULING PARAMETERS
	4.4.1.5 AFDX VIRTUAL LINK SCHEDULING PARAMETERS

	4.4.2 SYNCHRONIZATION PARAMETERS

	4.5 MUTUAL EXCLUSION RESOURCES
	4.6 OPERATIONS
	4.6.1 Overriden scheduling parameters

	4.7 END-TO-END FLOWS
	4.7.1 WORKLOAD EVENTS
	4.7.2 OBSERVERS
	4.7.3 STEP EVENT HANDLER
	4.7.4 TIMED EVENT HANDLERS
	4.7.5 FLOW CONTROL EVENT HANDLERS
	4.7.6 MESSAGE EVENT HANDLERS

