
Ada Distilled for Ada 2005 by Richard Riehle

 Page 1 of 117

for

AAAdddaaa 222000000555

An Introduction to Ada Programming
for

Experienced Computer Programmers

by
Richard Riehle

Copyright 2011 Richard Riehle

Public Edition. Permission to copy if unmodified when copied
Version: January 2011

for
Ada 2005 Standard

Ada Distilled by Richard Riehle

 Page 2 of 117

Notes Programming Language Evolution

A programming language that does not evolve to incorporate the best of the new ideas in
software development is likely to become less expressive of new kinds of problems and
their corresponding solutions. This has been the fate of many other languages, even
though those languages may continue to have loyal and even militant advocates. For
example, PL/I has never evolved to support the object model or to correct some of the
minor problems of its original design, and this has resulted in its becoming less important
than it could have been had such an evolution occurred. Fortran and COBOL have
evolved. COBOL even has an object-oriented model, and has been extended to include
some powerful features that were missing from earlier versions.

Ada began with the Mil-Std 1983 version. In that version of the language, caution was
an important watchword. The designers were more concerned with dependability than
with flexibility of advanced concepts in computer science and programming. The focus
was on designing a language that would correspond to the most stable practices in
software at that time. That language would include a capability where errors could be
detected as early in the development cycle as possible. It also supported a model for
software engineering that was not typical of other languages of that era.

In 1987 Ada became an ISO standard. There were no significant changes to the language
at that time, but the fact that it was no longer a military language opened the door for
major improvements for the 1995 standard. Chief among those changes was a reliable
approach to object-oriented programming.

There were many other important changes in the Ada 2005 standard. As usual, every
effort was made to avoid making existing language rules obsolete. Therefore, most of the
programs in previous versions of this book will still compile, link, and execute. There
are some occasional problems with older programs, many of which have to do with new
pragmas. We will note some of these where we can.

As of this edition, (January 2011) there are more new features being proposed for the
Ada language. Foremost among these is the addition of a more powerful approach to
assertions than has been available in earlier versions of Ada. Because those new features
are not yet approved as part of the ISO Standard, we do not include them in this version
of Ada Distilled. However, when those features are approved, we will add them to the
book.

We expect that Ada will continue to evolve, and as it does, it will become a more sought
after language for solutions to many new kinds of software problems. In particular, the
advent of “massively parallel architectures” and their corresponding operating systems,
provides an excellent opportunity for Ada to become an important player in software
solutions for that architectural domain.

Ada Distilled by Richard Riehle

 Page 3 of 117

Acknowledgments to Current (2008) Edition

 There are always a lot of people involved in the creation of any book, even one as
small and modest as this one. Those who have contributed to the best features of this
book include my students at Naval Postgraduate School, Mr. Michael Berenato of
Computer Sciences Corporation, Mr. Ed Colbert of Absolute Software, and many
students from Lockheed-Martin Corporation, Computer Sciences Corporation, British
Aerospace, various branches of the uniformed services, to name a few. I also owe a
special thanks to Dr. Ben Brosgol, Dr. Robert Dewar, Mr. Mark Gerhardt, and Dr.
Mantak Shing for what I have learned from them. Also thanks to the contributors to
comp.lang.ada Usenet forum and the Team_Ada Listserve. Phil Thornley deserves
extra credit for his detailed reading of the manuscript and many corrections.

Special thanks goes to Ed Colbert for his careful study of some of my program
examples. He is one of those people who can spot a program error at fifty paces.
Using this unique skill, Ed brought many errors, some big and some small, to my
attention. Also thanks to more recent input from Phil Thornley and Adrian Hoe.

Any other errors are strictly mine. Any mistakes in wording, spelling, or facts are
mine and mine alone.

I hope this book will be valuable to the intended audience. It is moderate in its intent:
help the beginning Ada programmer get a good start with some useful examples of
working code. More advanced books are listed in the bibliography. The serious
student should also have one of those books at hand when starting in on a real project.

 Richard Riehle

Intended Audience for this Book

This book is aimed at experienced programmers who want to learn Ada at the programming level.
It is not a "...for dummies" book, nor is it intended as a program design book. Instead, we
highlight some key features of the Ada language, with coded examples, that are essential for
getting started as an Ada programmer.

Ada is a rich and flexibile language used for designing large-scale software systems. This book
emphasizes syntax, control structures, subprogram rules, and how-to coding issues rather than
design issues. There are other really fine books available that deal with design. Also, this is not a
comprehensive treatment of the Ada language. The bibliography lists some books that can help
you once you have finished the material in this book.

Think of this a quick-start book, one that enables you, the experienced programmer, to get into the
Ada language quickly and easily. The examples use text-oriented programs for simplicity of
learning. If you prefer to do the exercises for a GUI environment, check out the sites listed for
compilers and tools so you can download bindings for programming in a variety of windowing
environments, including Wintel, Linux, and Unix. Of particular interest to those wanting to
explore Window style programming are GtkAda, CLAW, GWindows, and JEWL. The last of
these, JEWL, is especially useful if you have no prior experience writing Windows programs.

 Happy Coding,
 Richard Riehle

Ada Distilled by Richard Riehle

 Page 4 of 117

Table of Contents

TABLE OF CONTENTS ... 4

1. WHAT IS ADA DISTILLED? .. 4

2. SUMMARY OF LANGUAGE .. 6

3. TYPES AND THE TYPE MODEL .. 16

4. CONTROL STRUCTURES FOR ALGORITHMS .. 26

5. ACCESS TYPES (POINTERS) .. 34

6. SUBPROGRAMS ... 42

7. PACKAGE DESIGN .. 49

8. CHILD LIBRARY UNITS .. 54

9. OBJECT-ORIENTED PROGRAMMING WITH PACKAGES ... 60

10. USING STANDARD LIBRARIES AND ANNEXES ... 68

11. EXCEPTION MANAGEMENT .. 75

12. GENERIC COMPONENTS .. 78

13. NEW NAMES FROM OLD ONES .. 86

14. CONCURRENCY WITH TASKING... 91

A. ANNEXES, APPENDICES AND STANDARD LIBRARIES .. 96

ANNEX L PRAGMAS - LANGUAGE-DEFINED COMPILER DIRECTIVES 108

WINDOWS 95/98/NT/XP/ME/2000 PROGRAMMING .. 109

C. BIBLIOGRAPHY ... 111

1. What is Ada Distilled?

The Ada language is designed to maximize the possibilities for error detection early in the development process. This reduces the overall
cost of software development since it is known that errors corrected early, will cost less than those detected late. No other language, not
C++, not Java, not Eiffel, provides the level of support for safety-critical software found in Ada. Developers can and do make mistakes,
even using Ada, but the probability of such mistakes is substantially less when using Ada than it is when using other languages.
Therefore, when failure is not acceptable, during development or during software execution, the wise developer will select Ada.
Although Ada is not as popular as some of the more well-known languages, it has substantial benefits over most of them when software
dependability is a primary objective. In addition, contemporary Ada is as appropriate for developing GUI-based applications, information
systems applications, and computationally intensive systems as any existing language. It is truly a general-purpose language, well-suited
to any kind of software problem you might encounter.

Author's Observation and Opinion

Ada Distilled by Richard Riehle

 Page 5 of 117

This book is for experienced programmers new to Ada. Heavily commented example programs help
experienced programmer experiment with Ada. This is not a comprehensive book on the entire Ada
language. In particular, we say very little about Ada.Finalization, Storage Pool Management,
Representation Specifications, Concurrency, and other more advanced topics. Other books, listed in the
bibliography, cover advanced topics. This book is an entry point to your study of Ada.

The text is organized around example programs with line-by-line comments. Ada comments are the
double-hyphen and continue to the end of a line. Comments might be explanatory notes and/or
corresponding section of the Ada Language Reference Manual (ALRM) in the format of ALRM X.5.3/22.

with Ada.Text_IO; -- 1 10.1.2, A.10 Context clause
procedure Hello is -- 2 6.3 Specification with "is"
begin -- 3 6.3 Start algorithmic code
 Ada.Text_IO.Put_Line(“Hello Ada”); -- 4 A.10.6 Executable source code
end Hello; -- 5 6.3 End of procedure scope

where each line is numbered. The 10.1.2 and 6.3, etc. refer to ALRM Chapters 6.3, 10.1.2. A.10.6 refers to
Annex A.10.6. There is occasional commentary by source code line number. The line numbers are not
part of Ada, but provided on our examples for ease of commentary. Boxed notes are also included for
some examples. The preceding example shows one of these as:

1.1 Ada Compilers and Tools

Ada 95 compilers support a wide range of platforms. A free, open source, compiler, GNAT, based on
GNU technology, can be downloaded from the Web. Commercial Ada compilers and tools are available
from: Ada Core Technologies (GNAT), DDC-I, Rational (recently acquired by IBM), RR Software, Irvine
Compiler Corporation, Green Hills, SofCheck, Aonix, and OC Systems. Free editors, including AdaGide,
are useful for developing small Ada programs. More information on tools, including GUI development
tools, can be accessed using one of the URL's mentioned in the introduction and in the bibliography.
AdaCore’s GPS development environment is a multi-language development environment.

GUI development environments are also important. These include CLAW for Microsoft Operating
Systems, and GtkAda for other GUI environments including Microsoft operating systems, Linux, BSD,
OS/2, Java Virtual Machine, and every variety of Unix. AdaGide editor is available for MS Windows.

1.2 Ada Education

The bibliography of this book lists some of the books and educational resources available to the student of
Ada. Some colleges and universities offer Ada courses. In addition, there are companies that provide
classes for anyone interested in Ada software development.

1.3 Ada Software Practice

There is a lot of misinformation about Ada. One misconception is that it is a large, bloated language
designed by committee. This is not true. Ada is designed around a few simple principles that provide the
architecture for the language syntax and semantics. Once you understand these principles, Ada will be as
easy as many other languages. We highlight some of those design principles in this book. One important
principle is that the Ada compiler never assumes anything. Everything is explicit. Nothing in Ada is
implicit. This helps the compiler help you write more dependable code. Oh, and you'll rarely need the
debugger once you are experienced with Ada. Also, your Ada programs will usually compile to nearly
any contemporary platform and execute on that platform without change.

A hello program in Ada. This will compile
and execute with

any Ada compiler.

If the software must absolutely work without error, where a software accident could
kill or maim, Ada is the correct choice.

Ada Distilled by Richard Riehle

 Page 6 of 117

2. Summary of Language

2.1 Goals and Philosophy

Every programming language is intended to satisfy some purpose, some set of goals. Sometimes the goals
are stated in terms of a programming paradigm. For example, a goal might be to design an object-oriented
programming language. Another goal might call for a language that conforms to some existing
programming model with extensions to satisfy some new notions of programming techniques. Ada's goals
correspond to the final product of the software process. Ada is not designed to satisfy an academic notion
of how programs should be designed and written. Ada's Goals are:

• High reliability and dependability for safety-critical environments,
• Maintainable over a long span by someone who has never seen the code before,
• Emphasis on program readability instead of program writeability,
• Capability for efficient software development using reusable components

In summary, Ada is designed to maximize the error checking a compiler can do early in the development
process. Each syntactic construct is intended to help the compiler meet this goal. This means some Ada
syntax may initially seem extraneous but has an important role in alerting the compiler to potential errors in
your code. The default for every Ada construct is safe. Ada allows you to relax that default when
necessary. Contrast Ada's default of safe with most of the C family of languages where the default is
usually, unsafe. The safety default is one of Ada's most important contributions to engineering software.

Another important idea is expressiveness over expressibility. Nearly any idea can be expressed in any
programming language. That is not good enough. Ada puts emphasis on expressiveness, not just
expressibility. In Ada, we map the solution to the problem rather than the problem to the solution.

2.2 Elementary Syntax

2.2.1 Identifiers
Identifiers in Ada are not case sensitive. The identifiers Niacin, NIACIN, NiAcIn will be interpreted by
the compiler as the same. Underbars are common in Ada source code identifiers; e.g. Down_The_Hatch.
There is a worldwide shortage of curly braces. Consequently, Ada does not use { and }. Also, Ada does
not use square braces such as [and] . Ada has sixty-nine reserved words. Reserved words will usually
be shown in bold-face type in this book. (See Appendix A for a complete list of reserved words).

2.2.2 Statements, Scope Resolution, Visibility

An Ada statement is terminated with a semicolon. The entire scope of a statement is contained within the
start of that statement and the corresponding semicolon. Compound statements are permitted. A
compound statement has an explicit end of scope clause. A statement may be a subprogram call, a simple
expression, or an assignment statement. Here are some sample statements:

X := C * (A + B); -- 1 Simple assignment statement
Move (X , Y); -- 2 A procedure call statement
if A = B then -- 3 Start a compound if statement
 J := Ada.Numerics.Pi * Diameter; -- 4 Compute the circumference of a circle
else -- 5 Part of compound if statement
 J := Ada.Numerics.Pi * Radius ** 2; -- 6 Compute area of a circle
end if; -- 7 End of compound statement scope
if (A and B) or ((X and T) and (P or Q)) then -- 8 Parentheses required in mixed and/or construct
 Compute(A); -- 9 Call Compute subprogram
else -- 10 Part of compound statement
 Compute(P); -- 11 Subprogram call statement
end if; -- 12 End of compound statement scope

Ada is not an acronym. It is the name of the daughter of the English Poet, Lord Byron. She
is credited with being the "first computer programmer" because of the prescience
demonstrated in her early writings that described Charles Babbage's Analytical Engine. She
was honored for this contribution by having a language named after her.

The syntax of Ada is actually easy to learn and use. It is only when you get further in your study that you
will discover its full power. Just as there is "no royal road to mathematics," there is no royal road to
software engineering. Ada can help, but much of programming still requires diligent study and practice.

Ada's unique idea of visibility often causes difficulties for new Ada programmers.
Once you understand visibility, nearly everything else about Ada will be clear to you.

Yes, you can hack solutions
in Ada if you want.
However, it is intended as a
language for disciplined
design and construction of
high reliability software.

No curly braces in Ada

Ada Distilled by Richard Riehle

 Page 7 of 117

Note on Line 8 that an Ada conditional statement cannot mix and and or unless the expression includes
parentheses. This eliminates problems associated with such expressions. It also eliminates arguments
about precedence of mixed expressions, and errors due to incorrect assumptions about precedence.

2.2.3 Methods (Operators and Operations)

Methods in Ada are subprograms (procedures/functions) and include both operators and operations.
Operators include the symbols: =, /=, <, >, <=, >=, &, +, -, /, *. Other operators are the reserved words,
and, or, xor, not, abs, rem, mod. One issue that annoys newcomers to Ada is the strictness of the
visibility rules associated with operators. We will discuss the visibility rules and techniques for using them
sensibly in Section 2.4 and elsewhere in this book. For detailed operator rules, see ALRM 4.5.

All other methods are called operations. One operation, assignment uses the compound symbol: := . The
Ada programmer may not directly overload the assignment operation. Assignment is predefined for most
Ada types. It is prohibited for limited types. We describe limited types later in this book.

The Ada programmer may declare type-specific methods. An experienced Ada designer uses the package
specification for declaring such methods, and for overriding/overloading existing methods.

The membership test, not considered an operation by the language, has important method-like properties.
Membership test uses the reserved word in. Combine the word in with the word not (not in) for a
negative membership test. Membership testing is permitted for every Ada type, including limited types.

2.3 Library and Compilation Units

2.3.1 Library Units

An Ada program is composed of library units. A library unit is a unit that can be referred to using a with
clause. The technical name for the with clause is context clause. A context clause is a little like a #include
compiler directive in other languages, but with important differences. A library unit must successfully
compile before the compiler will recognize it in a context clause. Each compiled unit is placed in a
[sometimes virtual] library. Unlike a #include , the context clause does not make elements of a library unit
visible. Instead, a context clause simply puts the library unit in scope, making it potentially visible.

A library unit may be a package or a subprogram. Subprograms are either functions or procedures.

1) package A collection of resources with something in common, usually a data type.
2) procedure A simple executable series of declarations and associated algorithmic code.
3) function An executable entity which always returns a data type result.
4) child unit A package, procedure, or function that is a child of a package.

An Ada library unit consists of a specification part and implementation part. The implementation is
sometimes called a body. For a subprogram the specification part could be coded as,

procedure Open (F : in out File); -- Procedure specification; requires body.
function Is_Open (F : File) return Boolean; -- Function specification; requires body

A package is a collection of services (public and private), usually related through some data type. Most
Ada library units will be packages. A package specification includes type declarations, subprograms
(procedures and functions), and exceptions. Also, a package usually consists of a specification part
(public and private) and an implementation part. The implementation part of a package is called the
package body. A package specification almost always (not always) requires a package body.

A single library unit may be composed of more than one compilation unit. This is
called separate compilation. Ada ensures that separately compiled units preserve their
continuity in relationship to related units. That is, date and time checking, library name
resolution, and date and time checking of compiled units ensures every unit is always in
phase with every other related complation and library unit

C/C++ programmer note: An Ada
subprogram specification is analogous to,
but not identical to, a function prototype.

See 4.2.2

Note: Library
units may be
generic. See
chapter 12.

Ada Distilled by Richard Riehle

 Page 8 of 117

Here is a typical specification for a package library unit. The specification has two parts, public and
private. A client of a package can access only specification's public part, not its private part.

package Machinery_1_3 is -- 1 Package specification; requires body
 type Machine is private; -- 2 Specifies the visible part of the data type;
 procedure Turn_On (M : in out Machine); -- 3 procedure specification
 procedure Turn_Off (M : in out Machine); -- 4 procedure specification
 function Is_On (M : in Machine) return Boolean; -- 5 function specification
private -- 6 private part hidden from a client of contract
 type Machine is record -- 7 full definition of the publicly declared type
 Turned_On : Boolean := False; -- 8 component of the type; OOP attribute
 end record; -- 9 scope terminator for the component
end Machinery_1_3; -- 10 scope terminator for the specification

Here is a possible package body, which implements the specification. It is separately compiled.

package body Machinery_1_3 is -- 1 Package body; implements specification declarations
 procedure Turn_On (M : in out Machine) is -- 2 Repeat procedure specification; compiler checks this
 begin -- 3 Starts algorithmic section of procedure
 M.Turned_ON := True; -- 4 Simple assignment statement of boolean value
 end Turn_On; -- 5 Procedure scope terminator is required

 procedure Turn_Off (M : in out Machine) is -- 6 Must match profile in specification
 begin -- 7 Algorithms between begin and end
 M.Turned_On := False; -- 8 M.Turned called dot notation
 end Turn_Off; -- 9 Name is optional but end is required

 function Is_On (M : in Machine) return Boolean is -- 10 In mode is like a constant; it may
 begin -- 11 not be on left side of assignment
 return M.Turned_On; -- 12 return statement required of every function
 end Is_On; -- 13 Scope terminator for function
end Machinery_1_3; -- 14 End of all declarations for this package

Most often, the specification and the body are compiled separately. A specification must compile without
errors before its body can be compiled. The Ada compiler will issue a fatal error if the body is out of phase
with the specification. A programmer creating a client of the package, can only see the public part of the
specification. The specification is a contract with a client of the package. The contract must be sufficient
for the client to engage the promised services. Every declaration in the specification must conform,
exactly, to the code in the body. The Ada compiler detects non-conformance to ensure consistency over the
lifetime of the whole library unit. A change to a specification requires recompilation of the body. A
change to the body does not require recompilation of the specification. Consider this client subprogram:

with Machinery_1_3; -- 1 Context clause. Puts Machinery_1_3 in scope
procedure Test_Machinery_1_3 is -- 2 Specifxication for the procedure
 Widget : Machinery_1_3.Machine; -- 3 Local object of type Machine
begin -- 4 Starts the algorithmic section of this procedure
 Machinery_1_3.Turn_On (M => Widget); -- 5 Call the Turn_On using dot notation and named association
 Machinery_1_3.Turn_Off (M => Widget); -- 6 Call the Turn_On using dot notation and named association
end Test_Machinery_1_3; -- 7 Scope of subprogram terminates with the end clause

A client of the package, such as Test_Machinery_1_3, never has visibility to the private part or the body of
the package. Its only v iew is to the public part. However, the entire package is in scope, including the
body. The body is completely hidden from all views from outside the package even though it in scope.

2.3.2 Compilation Units

As noted earlier, library units can be composed of smaller units called compilation units. The library unit
is the full entity referenced in a context clause. An Ada package, as a library unit, is usually compiled as
two compilation units: package specification and package body. Do not think of a package specification

Public part

Private part

Body

Note the use of named association in the procedure call. The syntax includes the compound symbol => where the
formal parameter is on the left and the actual parameter is on the right. This Ada feature helps to make code more
readable and eliminates a lot of errors in the final source code. Named association is optional, but it is very powerful
and used often in production code.

Ada Distilled by Richard Riehle

 Page 9 of 117

as a C++ .h file. The Ada rules are more rigorous than those for C++ .h files. The package body does not
need to with its own specification. A package body can be further subdivided into even smaller
compilation units called subunits. Subunits, used wisely, benefit the maintenance cycle of existing Ada
programs.

The specification of Machinery_1_3 in the previous section can be compiled by itself. Later, the package
body can be compiled. The procedure Test_Machinery_1_3 may be compiled before the package body of
Machinery_1_3. The test program cannot be linked until all separately compiled units are compiled.

The package body for Machinery_1_3 could have been coded for separate compilation as,

 package body Machinery_1_3 is -- 1
 procedure Turn_On (M : in out Machine) is separate; -- 2
 procedure Turn_Off (M : in out Machine) is separate; -- 3
 function Is_On (M : in Machine) -- 4
 return Boolean is separate; -- 5
end Machinery_1_3; -- 6

Compilation units in most Ada programs will be a package specification and package body. Sometimes, as
in lines 2, 3, 5, you may see a subprogram specification compiled with the word separate instead of an ...
is ... end implementation. This implies separate compilation of the body for that subprogram.

Ada does not force separate compilation, but some Ada compilers do. An implementation is free to impose
this requirement. The standards for most Ada development shops also require separate compilation.

An Ada package may have child library units. A package, such as package Machinery, may be the root of
a tree of child library units. This provides a unique opportunity for separate compilation and extension.

Here is an example of parent-child library units.

package Messenger is -- 1 Package specification; requires body
 type Message is private; -- 2 Visible part of the data type; name only
 function Create (S : String) return Message; -- 3 function specification
 procedure Send (M in Message); -- 4 procedure specification
 procedure Receive (M : out Message); -- 5 procedure specification
 function Size (M : in Message) return Natural; -- 6 function specification
private -- 7 private part hidden from a client of contract
 type Message is record -- 8 full definition of the publicly declared type
 Text : String (1..120) := (others => ' '); -- 9 string component of the type; OOP attribute
 Length : Natural := 0; -- 10 how many of the 120 values are in use
 end record; -- 11 scope terminator for the component
end Messenger; -- 12 scope terminator for the specification

with Ada.Calendar;
package Messenger.Dated is -- 1 Package specification; requires body
 type Dated_Message is private; -- 2 Visible part of the data type; name only
 function Create (M : in Message) -- 3 function specification
 return Dated_Message; -- 4 function always specifies a return type
private -- 5 private part hidden from a client of contract
 type Dated_Message is record -- 6 full definition of the publicly declared type
 Text : Message; -- 7 string component of the type; OOP attribute
 Date : Ada.Calendar.Time; -- 8 how many of the 120 values are in use
 end record; -- 9 scope terminator for the component
end Messenger.Dated; -- 10 scope terminator for the specification

At first, a child library unit might be mistaken as a form of inheritance. The experienced OOP practitioner
will see that it is not inheritance; the is_a is relationship is absent. Rather, it allows one to extend the
original package and add more features. The declarative region for Messenger has been extended to
include the declarations of Messenger.Dated. Any client of Messenger.Dated has direct visibility to the

A subprogram declared is separate places a subunit in the library. The
subunit may have its own context clauses, its own local variables, and its
own algorithmic code. Also, each subunit may be compiled independently
once its parent has been successfully compiled. This means easier, faster
maintenance and better unit testing. During development, each subunit can
be assigned to a different programmer

Parent
Library

Unit

Child
Library

Unit

See Chapter 8 for more on child library units.

Note how a child library unit is formed using the parent name followed by a dot and the child

Ada Distilled by Richard Riehle

 Page 10 of 117

public declarations of Messenger. The private part of Messenger.Dated and the body of Messenger.Dated
has direct visibility to the private and public parts of Messenger.

Dated_Message is implemented is a has_a relationship. This means that Dated_Message contains a value
of type Message. Dated_Message cannot be converted to an object of type Message. They are two
distinct types, even though one is nested within another.

2.4 Scope and Visibility

Failure to understand the difference between scope and visibility causes more problems for new Ada
programmers than any other single topic. It is an idea central to the design of all Ada software. There is an
entire ALRM chapter devoted to it, Chapter 8. A with clause puts a library unit into scope; but none of the
resources of that unit are directly visible to a client. This is different from a #include in the C family of
languages. Separating scope from visibility is an important software engineering concept. It is seldom
designed into other programming languages. This book has many coded examples that illustrate visibility
rules. Ada has several techniques for making in-scope elements directly visible.

2.4.1 Scope

Every Ada statement has an enclosing scope. Sometimes the scope is easy to see in the source code. There
is an entry point (declare, subprogram identifier, composite type identifier, package identifier, etc.) and an
explicit point of termination. Explicit terminations are coded with an end statement. Anytime you see an
end clause, you know it is closing a scope. Scope can be nested. For example, a procedure may be
declared inside another procedure. The scope of context clause (with clause) is not as obvious. The
context clause puts the full resources of a library unit in scope, but makes none directly visible.

A pure interpretation of the scope mechanism might better describe this in terms of a declarative region. However, since this book is
intended as an introduction to the practical aspects of the Ada, we limit our discussion to a more pragmatic view of the visibility
mechanism. For a more rigorous description, please consult the Ada LRM, Chapter 8.

A with (context) clause implies a dependency on the library unit named in that clause. This dependency
can be at either the specification level of the withing library unit or deferred to the body of that unit.

2.4.2 Visibility

An entity may be in scope but not directly visibile. This concept is better developed in Ada than in most
programming languages. Throughout Ada Distilled you will see visibility examples such as:

• use clauses makes all public resources of a package directly visible
• use type clauses makes public operators directly visible for designated type
• entity dot notation entity in notation is directly visible; usually the best option
• renaming , locally, of operations/operators usually best option for making operators directly visible

During development, an Ada compiler error message may advise you that some entity is not
visible at the point where it is declared or used. Most often a visibility problem will relate to
operators (2.7). One of the mechanisms from the above list can make that entity visible. It will be easier to
demonstrate visibility in the code examples than to trudge through a tedious jungle of prose. Watch for
uses of the visibility mechanisms above in our coded examples.

2.5 Declarations, Elaboration, Dependencies

Most Ada software systems are composed of many independent components, most in the form of packages.
These packages are associated with each other through context clauses (i.e., with clause).

Some programmers find the concept of visibility more difficult than any other part of Ada.
Once they really understand visibility, everything else in language makes sense.

NOTE: ISO
Standard C++
namespace adopts a
weakened form of
Ada's scope and
visibility model.

Understanding visibility is the key to understanding Ada.

Important

The general rule for
the use clause is to
not use it. However,
for lots of programs
where dependability
and maintainability
are less important
(e.g., experimental
programs), one may
use the use clause
freely to simplify the
coding process.

Ada Distilled by Richard Riehle

 Page 11 of 117

Notice that dependencies between library units can be deferred to the package body. This unique feature
of Ada is based on the integral nature of library units and takes advantage of the separate compilation
capability. Ada gives us the best of both capabilities. We can minimize the design dependencies by
declaring context clauses for the package body instead for the package specification. This eliminates the
need to re-compile (or re-examine) the relationships each time we make a change somewhere in our design.

An Ada program includes declarations and executable statements. A package specification is a set of
declarations. The package body may also contain localized declarations. The scope of the declarations
can be thought of as a declarative region. In the declarative region, declarations are in scope but not
necessarily visible. Declarations in a package body are in the declarative region, but are not visible to a
client or child library unit.

2.5.1 Elaboration

Declarations must be elaborated before the program can begin its algorithmic part. Elaboration is the set of
actions a program must complete before it can begin its algorithmic actions. It usually takes place without
action by the programmer. Ada does provide some pragmas (compiler directives) for control over the
timing and order of elaboration. Usually, elaboration occurs at execution time. A programmer may
specify compile-time elaboration through pragma Preelaborate or pragma Pure. If that compile-time
elaboration is possible, it may occur according to the semantics of each pragma.

Library units named in a context (with) clause must be elaborated before they are actually available to a
client. When there are multiple context clauses, each must be elaborated. In some circumstances,
resources of one library unit must finish elaborating before another library unit complete its elaboration.

2.5.2 Ada Comb

An Ada program unit may sometimes be viewed in terms of the "Ada Comb," an idea first introduced to
me years ago by Mr. Mark Gerhardt. The Ada Comb demonstrates how declarations and algorithms are
related within an implementation; i.e, subprogram body, task body, declare block, package body, etc.

kind-of-unit unit-name -- 1 procedure, function, package body, declare block, etc.
 local declarations -- 2 Must be elaborated prior to begin statement
begin -- 3 Elaboration is done. Now start executing statements
 handled-sequence-of-statements -- 4 Handled because of the exception handler entry
exception -- 5 Optional. Not every comb needs this.
 sequence-of-statements -- 6 This is the area for exception handler code
end unit-name; -- 7 Every comb requires a scope terminator

Ada is a block-structured language. Local declarations may contain: other subprogram declarations
(including their body), instances of types, instances of generic units, tasks or task types, protected objects
or protected types, use clauses, compiler directives (pragmas), local type declarations, constants, and
anything else that falls into the category of the items just listed. Even though the list of legal entities in a
declaration is long, only a few elements are actually used in practice. Be aware of the Ada Comb when
studying the subprograms and algorithmic structures in this book.

with A;
with B;
with C;
package Q is
 ...
end Q;

with A;
with B;
with C;
package R is
 ...
end R;with E;
with F;
package body R is
 ...
end R;

with R;
package T is
 ...
end T;

with A;
package body T is
 ...
end T;

with T;
package body Q is
 ...
end Q;

specification specification specification

body body body

Elaboration brings declarations into existence, usually at run-time

Ada Distilled by Richard Riehle

 Page 12 of 117

The handled-sequence-of-statements includes statements that operate on declarations. This includes
assignment, comparisons, transfers of control, algorithmic code. More specifically, we see the three
fundamental control structures of the structure theorem (Jacopini and Böhm): sequence, iteration, selection.
You may also see a declare block, with local declarations, within the handled-sequence-of-statements.

with Ada.Text_IO; -- 1 Is elaborated before being used
with Machinery; -- 2 Is elaborated before being used
procedure Ada_Comb_Example_1 is -- 3 Name of enclosing unit
 Data : Machinery.Machine; -- 4 Declarations local to enclosing unit
begin -- 5
 declare -- 6 Can declare local variables in this block
 Data : Integer := 42; -- 7 The name, Data, hides the global declarations
 begin -- 8 Integer Data now is visible; Outer Data is not
 Data := Data + 1; -- 9 Handled sequence of statements
 exception -- 10 Start exception handler part of unit
 when some-exception => -- 11 Name the exception after reserved word, when
 -- sequence of statements -- 12 Any legal sequence of statements here
 end; -- 13 End of scope of declare block
end Ada_Comb_Example_1; -- 14 End of enclosing scope

The Ada comb may be found in most algorithmic units. This includes procedures, functions, package
bodies, task bodies, and declare blocks. These units may also include some kind of identifier (label). In
production code, it is helpful to include the label at the beginning of the comb as well as at the end of it.
Here is a variation on the previous example

procedure Ada_Comb_Example_2 is -- 1 Name of procedure
 Data : Float := 0.0; -- 2 Floating point declaration in scope
begin -- 3
 Integer_Block: -- 4 A label for the declare block
 declare -- 5 Can declare local variables in this block
 Data : Integer := 42; -- 6 The name, Data, hides the global declarations
 begin -- 7 Integer Data now is visible; Float Data is not directly visible
 Data := Data + 1; -- 8 Simple incrementing statement
 exception -- 9 Localized exception handling region
 when Constraint_Error => ... -- 10 Statements to handle the exception
 end Integer_Block; -- 11 Named end of scope for declare block
Data := Data + 451.0; -- 12 Float data is once more visible
end Ada_Comb_Example_2; -- 13 End of scope of procedure

The second example has an exception handler localized in the declare block. Note the identifier (label) for
this declare block. A block label is any user-defined name followed by a colon. The block repeats the
identifier at the end of its scope. In the scope of the declare block, the floating point variable with the
same name as the item in the declare block is automatically made invisible. Because it is still in scope, it
could be made visible with dot notation (Ada_Comb_Example_2.Data ...). Try to avoid identical names
within the same scope. In large-scale systems with many library units, avoiding this is not always
possible.

2.6 Variables and Constants

A variable is an entity that can change its value within your program. That is, you may assign new values
to it after it is declared. A constant, once declared with an assigned value, may not be changed during its
lifetime in your program. Variables and constants may be declared in a certain place in your program,

Ada Distilled by Richard Riehle

 Page 13 of 117

called the declarative part. Every variable and constant must be associated with some type. The basic
syntax for a variable declaration is,

name_of_variable : name_of_type; -- for a scalar or constrained composite type
name_of_variable : name_of_type(constraint) ; -- for an unconstrained composite type

Declarations for predefined types (see package Standard in the appendices of this book)

Value : Integer; -- see Annex A.1, package Standard
Degrees : Float; -- see Annex A.1, package Standard
Sentinel : Character; -- see Annex A.1, package Standard
Result : Boolean; -- see Annex A.1, package Standard
Text : String(1..120); -- Must always constrain a string variable

We could also initialize a variable at the time it is declared,

Channel : Integer := 42; -- "...life, the universe, and everything."
Pi : Float := Ada.Numerics.Pi; -- from Annex A.5, ALRM
ESC : Character := Ada.Characters.Latin_1.ESC; -- from Annex A, ALRM
Is_On : Boolean := True; -- from Annex A.1, ALRM
Text : String(1..120) := (others => '*'); -- Every element initialized to asterisk

2.7 Operations and Operators

Ada distinguishes between operations and operators. Operators are usually the infix methods used for
arithmetic, comparison, and logical statements. Operators present a visibility problem for a new Ada
programmer. Watch for the discussion of operator visibility that follows in this section.

2.7.1 Assignment Operation

Somewhere among his published aphorisms and deprecations, Edsger Dijkstra observes that too few
programmers really understand the complexities of the assignment statement. I have not been able to
excavate the exact quote from those of his publications immediately at hand. It is true, however, that
assignment is increasingly complicated as new programming languages are invented. Ada is no exception,
and may actually have more complicated rules about assignment than some other languages.

The Ada assignment operation, := , is a compound symbol composed of a colon symbol and equal symbol.
It is predefined for every Ada type except limited types. It is illegal, in Ada, to directly overload,
rename, or alias the assignment operation. In a statement such as,

 A := B + C * (F / 3);

the expression on the right side of the assignment operation is evaluated and the result of that evaluation is
placed in the location designated by the variable on the left side. All the variables on both sides must be
of the same type. In an expression,

 X := Y;

X and Y must both be of the same type. If values in an assignment statement are not of the same type, the
programmer may, under strictly defined rules, convert Y to a type corresponding to the type of X.

type X_Type is ... -- Ellipses are not part of the Ada language; used for simplification here
type Y_Type is ...
X := X_Type(Y); -- When type conversion is legal between the types

Note: Although Ada does not allow direct overloading of the assignment operator, it is sometimes useful to do that kind of overloading, and
Ada has a facility for designing in this feature safely but indirectly, by deriving from a controlled type.

Reminder: the assignment operator is legal only on non-limited types. Also, both sides of the assignment
operator must conform to each other. Composite types must have the same size and constraints.

:=

String is defined in package Standard as an unconstrained array

Strings in Ada have index
values of subtype positive
which means the lowest
possible value for a string
index is 1, not zero.

Ada Distilled by Richard Riehle

 Page 14 of 117

Type conversion is not legal between all types. If both types are numeric, the conversion is probably legal.
If one type is derived from another, it is legal. Otherwise, type conversion is probably not legal.

Assignment may be more complicated if the source and target objects in the assigment statement are
composite types. It is especially complicated if those composite types include pointers (access values) that
reference some other object. In this case, access value components may create entertaining problems for
the programmer. For this reason, composite types constructed from pointers should be limited types.
For limited types, one would define a Deep Copy procedure. Ada makes it illegal to directly overload the
assignment operator. Study an example of a deep copy in the generic Queue_Manager later in this book.

Sometimes two types are so completely different that assignment must be performed using a special
generic function, Ada.Unchecked_Conversion. Do not be too hasty to use this function. Often there is
another option. Note the following example:

with Ada.Unchecked_Conversion; -- 1 Chapter 13 or ALRM
procedure Unchecked_Example is -- 2 Generally speaking, don't do this
 type Vector is array (1 .. 4) of Integer; -- 3 Array with four components
 for Vector'Size use 4 * Integer'Size; -- 4 Define number of bits for the array
 type Data is record -- 5
 V1, V2, V3, V4 : Integer; -- 6 A record with four components
 end record; -- 7
 for Data'Size use 4 * Integer'Size; -- 8 Same number of bits as the array
 function Convert is new Unchecked_Conversion -- 9
 (Source => Vector, Target => Data); -- 10 Convert a Vector to a Data
 The_Vector : Vector := (2, 4, 6, 8); -- 11 Intilialize a Vector with values
 The_Data : Data := (1, 3, 5, 7); -- 12 Intilialize a Record with values
begin -- 13
 The_Data := Convert(The_Vector); -- 14 Assignment via unchecked conversion
end Unchecked_Example; -- 15

Even though Line 14 probably works just fine in all cases, many Ada practitioners will prefer to do the
assignments one at a time from the components of Vector to the components of Data. There will be more
code, but selected component assignment is guaranteed to work under all circumstances. Unchecked
conversion may be less certain unless you are careful about what you are doing.

2.7.2 Other Operations

There are several reserved words that behave like operations. Most of these such as abort, delay,
accept, select, and terminate are related to tasking. Others include raise (for exceptions), goto,
and null. Some Ada practitioners might not agree with the notion that these are operations, however, in
any other language they would be so considered.

Other operations, for non-limited types, are described in Chapter Four of the Ada Language Reference
Manual. Again, these might not be thought of as operations, but they do have functionality that leads us to
classify them as operations. These include array slicing, type conversion, type qualification, dynamic
allocation of access objects, and attribute modification (Annex K of ALRM).

Because Ada supports object technology, the designer is allowed to create, overload, and override
operations (except assignment) and operators. Subprogram (procedure and function) specifications may
be declared in the public part of a package specification. They are implemented in the body of a package.
For example, in a stack package, the operations might be Push, Pop, Is_Full, Is_Empty. For abstract data
types, the operations are described as subprograms on the type.

Ada Distilled by Richard Riehle

 Page 15 of 117

2.7.3 Operators

As mentioned in Section 3.2.2, Ada distinguishes between operators and operations. This distinction is
useful for visibility management. Operators may be overloaded.

Operators can be thought of as functions. For example, for a type, T, function signatures might be:

 function "=" (Left, Right : T) return Boolean; -- signature for equality operator
 function ">=" (Left, Right : T) return Boolean; -- signature for equality operator
 function "+" (Left, Right : T) return T; -- signature for addition operator

This signature style applies to all operators. The name of the operator is named in double quotes as if it
were a string. You may overload operators for your own types. In Ada, the return type is part of the
signature. There is a special visibility clause that makes all the operators for a named type fully visible:

 use type typename; -- typename is the name of the type in scope. It might need to be dot qualified

Some designers prefer to make selected operators visible using the renames clause instead of the the use
type clause. For example, if type T is defined in package P,

 function "+" (Left, Right : P.T) return P.T renames P."+"; -- makes "+" directly visible

The above function renames the addition operator for a specific type. It uses dot notation to reference the
package in which the type is defined. You can code this in the declarations of a unit that has a context
clause for (for example) P and a type P.T. This makes the plus operator directly visible in the immediately
enclosing scope. Many Ada practitioners feel this is a better engineering solution to controlling visibility
than any of the other options. It does have the effect of ensuring that no accidental coding of some other
operator is possible since only this one is directly visible.

2.8 Elementary Sequential Programs

Ada supports two kinds of subprograms: procedures and functions. A subprogram may be a standalone
library unit. Often it a subprogram is declared in some other unit such as a package specification. The
implementation part of the subprogram is called the "body." The body for Open might be coded as:

procedure Open(F : in out File) is -- 1 Note the reserved word, is
 -- optional local declarations -- 2 Between is and begin, local declarations
begin -- 3 Subprogram body requires a begin
 -- some sequence of statements -- 4 Some statements or reserved word null;
end Open; -- Most standards require repeating the identifier here -- 5 End required; Identifier optional but usual

Sometimes we code the subprogram specification and body together, as just shown. There are many cases
of this in the example subprograms in this book. The optional local declarations on Line 2 are local to the
subprogram. That is, they are never visible to another unit. This is one more level of visibility. When
you fully understand the visibility rules, you will understand most of Ada.

2.8.1 Subprogram Parameters

Subprograms may have formal parameters. Formal parameters must have a name, a type, and a mode. A
mode tells the compiler how a parameter will be used in a subprogram. The parameter mode may be in,
out, in out, or access. The following table simplifies the concept of parameter mode:

Mode Function Procedure Assigment Operator Position
in Yes Yes Only right side of := (a constant in subprogram)
out No Yes Right or Left side of := (but has no initial value)

There is a more in-depth discussion of this topic in Chapter 6.

Understanding visibility is the key to understanding Ada

Ada Distilled by Richard Riehle

 Page 16 of 117

in out No Yes Right or Left side of := (has initial value)
access Yes Yes Only right side of := (but might assign to component)

The table is an over-simplification. It will work well for you as a programmer. Just understand that out
mode parameters are not called with an initial value, and access mode parameters (See Chapter 5) are
pointing to some other data. The data being accessed may be modified even though the access value itself
may not. Examples of parameters and their modes within a subprogram,

2.8.2 Subprogram Specifications with Parameters

procedure Clear (The_List : in out List); -- The_List can be on either side of :=
function Is_Empty (The_List : in List) return Boolean; -- The_List can be on right side of :=
function Is_Full (The_List : List) return Boolean; -- default in mode
procedure Get (The_List : in List; Data : out Item); -- two modes; two parameters
procedure Set_Col (To : in Positive_Count := 1); -- default value for in mode
procedure Update (The_List : in out List; Data : in Item); -- two modes; two parameters
function Item_Count (The_List : access List) return Natural; -- The_List can be on right side of :=
procedure Item_Count (The_List : access List; -- The_List can be on allowed on right of :=
 Count : out Count); -- unitialized; left or right of :=
function M_Data (Azimuth, Elevation, Time : Float) return Float; -- Three parameters, same type

A call to a formal parameter with an actual parameter should usually include named association.
Consider function M_Data, above. Which is more readable and more likely to be accurate?

 R := M_Data (42.8, 16.2, 32.8);
 R := M_Data (Elevation => 16.2, Time => 32.8, Azimuth => 42.8);

Consider a problem that often occurs in languages such as C or C++ with three parameters of the same
type:

 int mdata (int x, int y, int z) { ... }

In C, there is no easy way to explicitly ensure correct actual values are being sent to the right formal
arguments. Consequently, it is easy to accidentally call a function with the wrong data, even if that data is
of the correct type. Some more recent languages have adopted this feature from Ada.

Ada programmers, using named association, prevent this kind of accident because errors are easily detected
by the compiler. This can save countless hours of debugging time. Later, when someone needs to
maintain a program using named association there is less difficulty determining what parameters are being
used and when. This is especially useful for parameter lists where some of the formal parameters have
default values.

3. Types and the Type Model

3.1 Rigorous Type Rules
Type safety is the language feature for which Ada is best known. It is actually only one of the many strong
points in Ada. The following discussion will clarify how it works. A type, in Ada, consists of four parts,

1. A name for the type
2. A set of operations for the type
3. A set of values for the type
4. A set of rules governing type relationships; e.g., a wall between objects of differing types

The last feature, the wall, is the default of the Ada typing model. Ada does provide capabilities for getting
around or over the wall, but the wall is always there. There are two general categories of type, elementary
and composite. A composite type is a record or an array. Everything else, for our purposes in this book, is

Ada has no structural equivalence as found in C, C++, and Modula-3. Strict name equivalence
model. Ada has no automatic promotion of types from one level to another. We enjoy better
type safety under these rules. Even Java falls short of Ada when considering type safety. This is
one reason Ada is the right choice for safety-critical and human-rated software applications.

What happens if the wrong parameters of the right type are passed?

The compound symbol means associate the formal
parameter with the named actual parameter.

Named association enables explicit interfaces. This is an important engineering principle for software.

Named association
where actual
parameter is

associated with
formal formal

Ada Distilled by Richard Riehle

 Page 17 of 117

an elementary type. (Note: there are minor exceptions to this definition when you get into more advanced
Ada). Some types are predefined in a package Standard (see this Appendix A of this book). From the
object-oriented viewpoint, a type has state, operations to modify state and operations to query state.

3.2 Type Safety

A better way to view strong typing is to think in terms of type safety. Every construct in Ada is type safe.
For Ada, type safe is the default. For most languages, type safe is not the default. In still other languages,
type safety is an illusion because of structural equivalence or implicit type promotion. Ada does not
support either of those concepts because they are not type-safe. An Ada designer declares data types,
usually in a package specification. The declared types include a constrained set of values and operations
appropriate to the problem being solved. This ensures a rigorous contract between the client of a type and
the promise made by the package in which the type is defined.

3.3 Declaring and Defining Types

3.3.1 Categories of types

Ada types can be viewed in two broad categories: limited, and non-limited. A type with a limited view
cannot be used with the := expression, ever. All other types can be used with := as long as that
assignment is between compatible (or converted view of) types. Ada defines certain types as always
limited. These include task types, protected types, and record types with access discriminants.

Types in Ada may be considered in terms of their view. A type may be defined with a public view which
can be seen by a client of the type, and a non-public view that is seen by the implementation of the type.
We sometimes speak of the partial view of the type. A partial view is a public view with a corresponding
non-public view. Partial views are usually defined as private or limited private. Also, the public view of a
type may be limited where the implementation view of that same type may be non-limited. Ada does not
define a protected view directly analogous to C++ or Java. However, some of the essential properties of
that view are available as necessary.

Another important category is private type versus non-private type. A limited type may also be private.
A type with a private view may also have a view that is not private. Any Ada data type may have a view
that is private with a corresponding view that is not private. The predefined operations for a non-limited
private type include: := operation, = operator, /= operator. Any other operations for a private type must
be declared explicitly by the package specification in which the type is publicly declared.

3.3.2 A Package of Non-private Type Definitions

In addition to predefined types declare in package Standard, the designer may also define types. These
may be constrained or unconstrained, limited or non limited. Here are some sample type declarations.

package Own_Types is
 type Color is (Red, Orange, Yellow, Green, Blue, Indigo, Violet); -- 1 An enumerated type;
 -- an ordered set of values; not a synonym for a set of integer values -- 2 A single line comment
 type Farenheit is digits 7 range -473.0..451.0; -- 3 Floating point type
 type Money is delta 0.01 digits 12; -- 4 Financial data type for accounting
 type Quarndex is range -3_000..10_000; -- 5 Integer type; note underbar notation
 type Vector is array(1..100) of Farenheit; -- 6 Constrained array type
 type Color_Mix is array(Color) of Boolean; -- 7 Constrained by Color set
 type Inventory is record -- 8 A constrained record type
 Description : String(1..80) := (others => ' '); -- 9 Initialized string type record component
 Identifier : Positive; -- 10 A positive type record component
 end record; -- 11 End of record scope required by Ada

Ada Distilled by Richard Riehle

 Page 18 of 117

 type Inventory_Pointer is access all Inventory; -- 12 Declaring a pointer type in Ada
 type QData is array(Positive range <>) of Quarndex; -- 13 Unconstrained array type
 type Account is tagged record -- 14 See next example: 1.5.3.3
 ID : String (1..20); -- 15 Uninitialized string type component
 Amount : Money := 0.0; -- 16 See line 4 of this package
 end record; -- 17 Required by language
 type Account_Ref is access all Account'Class; -- 19 Classwide pointer type for tagged type
end Own_Types;

3.3.3 A Private type Package

package Own_Private_Types is -- 1
 type Inventory is limited private; -- 2 Partial definition of limited private type
 type Inventory_Pointer is access all Inventory; -- 3 Declaring a pointer type in Ada
 procedure Create(Inv : in out Inventory); -- 4 Create an empty instance of Inventory
 -- More operations for type Inventory -- 5
 type Account is tagged private; -- 6 Partial definition of a tagged type
 type Account_Ref is access all Account'Class; -- 7 Classwide pointer type for tagged type
 procedure Create(Inv : in out Inventory); -- 8 Creates an empty Inventory record
 function Create (D : String; ID : Positive) return Account_Ref; -- 9 returns access to new Inventory record

 -- More operations for tagged type, Account -- 10
private -- 11 Begin private part of package
 type Inventory is record -- 12 A constrained record type
 Description : String(1..80) := (others => ' '); -- 13 Initialized string type record component
 Identifier : Positive; -- 14 A positive type record component
 end record; -- 15 End of record scope required by Ada
 -- 16
 type Account is tagged record -- 17 Extensible record tagged type
 ID : String(1..12); -- 18 Uninitialized string type component
 Amount : Float := 0.0; -- 19 A float type record component
 end record; -- 20 Required by language
end Own_Private_Types; -- 21

Note the signature of the Create procedure on Line 4. Since the inventory type is limited private, we would often want the mode of
parameter list to be in out. However, it is legal to have mode of out only.

3.4 Deriving and Extending Types

A new type may be derived from an existing type. Using the definitions from the previous package,

type Repair_Parts_Inventory is new Inventory; -- no extension of parent record is possible here
 -- because it is not a tagged type

where Repair_Parts inherits all the operations and data definitions included in its parent type. Also,

type Liability is new Account -- 1 extended from tagged parent, lines 6, 17-20, above
 with record -- 2 required ;phrase for this construct
 Credit_Value : Float; -- 3 extends with third component of the record
 Debit_Value : Float; -- 4 fourth component of the record
 end record; -- 5 record now extended with four elements

in which Liability, derived from Account, inherits all the operations and components of its parent type but
also adds two more components. This means that Liability now has four components, not just two. This
is called extensible type inheritance. From the above list of types, one might have a access (pointer)
variable,

Current_Account : Account_Ref; -- Points to Account or Liability objects

which can point to objects of any type derived from Account. That is, any type in Account'Class. This
permits the construction of heterogeneous data structures.

Public view of
specification

Private view
of
specification

Ada Distilled by Richard Riehle

 Page 19 of 117

3.5 Operations on Types

As mentioned in Section 2.7.3, Ada distinguishes between operators and operations. Legal syntax for
operations on types is defined in 4.5 of the ALRM. In general the rules are pretty simple. A limited type
has no language-defined operations, not even the := (assignment) operation. Every other type has :=, at
minimum. The following table summarizes some (not all) of these possibilities.

3.6 Where to Declare a Type

Usually, a type will be declared in a package specification along with its exported operations. Therefore,

package Machinery is -- 1 Package specification; requires body
 type Machine is private; -- 2 Specifies the visible part of the data type;
 procedure Turn_On (M : in out Machine); -- 3 procedure specification
 procedure Turn_Off (M : in out Machine); -- 4 procedure specification
 function Is_On (M : in Machine) return Boolean; -- 5 function specification
 function ">" (L, R : Machine) return Boolean; -- 6 Declare the ">" function for private type
private -- 7 private part hidden from a client of contract
 type Machine is record -- 8 full definition of the publicly declared type
 Turned_On : Boolean := False; -- 9 component of the type; OOP attribute
 end record; -- 10 scope terminator for the component
end Machinery; -- 11 scope terminator for the specification

will imply that the public operations available to a client of Machinery, for the type Machine, are:

• pre-defined assignment and test for equality and inequality
• procedures Turn_On and Turn_Off
• functions Is_On and ">"
• no other operations on type Machine are available in package Machinery.

The language defined operations for a private type, Machine, are only assignment (:=) , Equality (=),
and Inequality (/=). All other operations and operators for Machine must be explicitly declared in the
contract, i.e., the package specification. The package has overloaded the ">" operator, so a client of this
package can do a greater than compare on two machine objects.

3.7 The Wall Between Types

The fourth property for a type, the wall, is illustrated using the following declarations,

Note: by a "wall" we mean that values of differing types may not be directly mixed in
expressions. Type conversion can sometimes help you across the wall. Other times, more
roundabout approaches are required. This is in keeping with Ada's charter to be as type safe as

Note: subprograms (procedures and functions) are analogous to methods
or member functions in other languages. Most of the time these are
public, but sometimes it is useful to make them private.

Note: membership test not officially an operation or operator. It cannot be overloaded. It is available for limited types.

 := = <, >, <=, >= & +, -, *, / abs rem/mod in not in
A. Non-Limited Types Y Y Y Y
 1. Elementary Y Y Y Y
 a. Scalar Y Y Y Y Y
 1) Discrete Y Y Y Y Y
 Enumerated Y Y Y Y Y
 Integer Y Y Y .. Y Y Y Y Y
 Modular (Unsigned) Y Y Y .. Y N Y Y Y
 2) Not Discrete Y Y Y N Y Y
 Float Y Y Y .. Y Y N Y Y
 Fixed Y Y Y .. Y Y N Y Y
 Decimal Y Y Y .. Y Y N Y Y
 2. Composite Y Y N N N Y Y
 1) Record Y Y N .. N N N Y Y
 2) Array Y N N N Y Y
 Constrained Y Y Y Y N N N Y Y
 Unconstrained N .. N N N Y Y
 3. Private Y N N N N Y Y
B. Limited N N N N N N N Y Y
C. May Overload? N Y Y Y Y Y Y N N

Ada Distilled by Richard Riehle

 Page 20 of 117

package Some_Types is -- 1 Declare specification name
 type Channel is range 2..136; -- 2 A constrained integer
 type Signal is new Integer -- 3 Derived from Standard.Integer
 range 1..150 -- 4 with a range constraint
 type Level is digits 7; -- 5 A floating point type
 subtype Small_Signal is Signal -- 6 No wall with objects of type Signal
 range 2..14; -- 7 but smaller range than Signal
 type Color is (Red, Yellow, Green, Blue); -- 8 Enumerated type with four values
 type Light is (Red, Yellow, Green); -- 9 Another enumerated type
 type Traffic is new Color -- 10 Derived from Color but with a
 range Red..Green; -- 11 smaller range of values.
end Some_Types; -- 12.

Warning. Most Ada practitioners recommend against this kind of package. It works well for our teaching
example, but is poor design practice. Generally, a package should be designed so each type is
accompanied by an explicit set of exported operations rather than depending on those predefined.

3.7.1 Type Rule Examples

The following procedure uses the package, Some_Types. It illustrates how the typing rules work.
Therefore, this procedure will not compile for reasons shown. A corrected example will follow .

with Some_Types; -- 1 No corresponding use clause; in scope only
procedure Will_Not_Compile is -- 2 Correct. Too many errors for this to compile
 Ch1, Ch2, Ch3 : Some_Types.Channel := 42; -- 3 Notice the dot notation in declaration
 Sig1, Sig2 : Some_Types.Signal := 27; -- 4 Dot notatation makes type Signal visible
 Level_1, Level_2 : Some_Types.Level := 360.0; -- 5 Dot notation again. No use clause so this is required
 Tiny : Some_Types.Small_Signal := 4; -- 6
 Color_1, Color_2 : Some_Types.Color := Some_Types.Red; -- 7 Dot notation required here
 Light_1, Light_2 : Some_Types.Light := Some_Types.Red; -- 8
 Tr1, Tr2, Tr3 : Some_Types.Traffic := Some_Types.Red; -- 9
begin -- 10
 Ch3 := Ch1 + ch2; -- 11 Cannot compile; + operator not directly visible
 Level_1 := Ch1; -- 12 Incompatible data types
 Tiny := Sig1; -- 13 This is OK because of subtype
 Color_1 := Light_1; -- 14 Incompatible types in expression
 Light_2 := Tr1; -- 15 Incompatible types
 Light_3 := Some_Types.Light(Color_1); -- 16 Type conversion not permitted for these types
 Tr3 := Color_1; -- 17 Incompatible types
 Tr1 := Some_Types.Traffic'Succ(Tr2); -- 18 This statement is OK
end Will_Not_Compile; -- 19

The following example corrects some of the problems with the preceding one. Note the need for type
conversion. We include an example of unchecked conversion. Generally, unchecked conversion is a bad
idea. The default in Ada is to prevent such conversions. However, Ada does allow one to relax the default
so operations can be closer to what is permitted in C and C++, when necessary.

with Some_Types; -- 1 Context clause from prior example
with Ada.Unchecked_Conversion; -- 2 Context clause for generic Ada library function
use Ada; -- 3 Makes package Ada directly visible
procedure Test_Some_Types is -- 4 Name for unparameterized procedure
 Ch1, Ch2, Ch3 : Some_Types.Channel := 42; -- 5 Initialize declared variables
 Sig1, Sig2 : Some_Types.Signal := 27; -- 6 Note dot notation in declared variables
 Level_1, Level_2 : Some_Types.Level := 360.0; -- 7 Declared variables with dot notation
 Tiny : Some_Types.Small_Signal := 4; -- 8
 Color_1, Color_2 : Some_Types.Color := Some_Types.Red; -- 9 Enumerated type declarations
 Light_1, Light_2 : Some_Types.Light := Some_Types.Red; -- 10
 Tr1, Tr2, Tr3 : Some_Types.Traffic := Some_Types.Red; -- 11
 use type Some_Types.Channel; -- 12 Makes operators visible for this type
 function Convert is new Unchecked_Conversion -- 13 Enable asssignment between variables of
 (Source => Some_Types.Light, Target => Some_Types.Traffic); -- 14 differing types without compile-time checking

Ada Distilled by Richard Riehle

 Page 21 of 117

begin -- 15
 Ch3 := Ch1 + ch2; -- 16 use type makes + operator visible
 Level_1 := Some_Types.Level(Ch1); -- 17 Type conversion legal between numeric types
 Tiny := Sig1; -- 18 This will compile because of subtype
 Tr3 := Some_Types.Traffic(Color_1); -- 19 OK. Traffic is derived from Color
 Tr1 := Some_Types.Traffic'Succ(Tr2); -- 21 This statement is OK
 Tr2 := Convert(Light_1); -- 22 Assign dissimilar data without checking

 Light_2 := Convert(TR3); -- Illegal Illegal Illegal -- 23 Convert is only one direction
end Test_Some_Types; -- 24

Notice that operations are not permitted between incompatible types even if they have a set of values with
identical names and internal structure. In this regard, Ada is more strongly typed than most other
languages, including the Modula family and the C/C++ family. Type conversion is legal, in Ada, when
one type is derived from another such as types defined under the substitutability rules of object technology.

3.7.2 Subtype Declarations

Ada has a reserved word, subtype. This is not the same as a subclass in other languages. If a subtype of a
type is declared, operations between itself and its parent are legal without the need for type conversion.

procedure Subtype_Examples is -- 1 Subprogram specification
 type Frequency is digits 12; -- 2 Floating point type definition
 subtype Full_Frequency is Frequency range 0.0 .. 100_000.0; -- 3 subtype definition
 subtype High_Frequency is Frequency range 20_000.0 .. 100_000.0; -- 4 subtype definition
 subtype Low_Frequency is Frequency range 0.0 .. 20_000.0; -- 5 sutype definition
 FF : Full_Frequency := 0.0; -- 6 Variable declaration
 HF : High_Frequency := 50_000.0; -- 7 Variable declaration
 LF : Low_Frequency := 15_000.0; -- 8 Variable declaration
begin -- 9
 FF := HF; -- 10 OK; no possible constraint error
 FF := LF; -- 11 OK; no possible constraint error
 LF := FF; -- 12 Legal, but potential constraint error
 HF := LF; -- 13 Legal, but potential constraint error
end Subtype_Examples is -- 14

3.8 Elementary Types

Elementary types are of two main categories, scalar and access. An access type is a kind of pointer and is
discussed in Chapter 5 of this book. Scalar types are discrete and real. Discrete types are enumerated
types and integer types. Technically, integer types are also enumerated types with the added functionality
of arithmetic operators. Numeric discrete types are signed and unsigned integers.

Non-discrete, real numbers include floating point, ordinary fixed point, and decimal fixed point. The Ada
programmer never uses pre-defined real types for safety-critical, production quality software.

All scalar types may be defined in terms of precision and acceptable range of values. The designer is even
allowed to specify the internal representation (number of bits) for a scalar value.

type Index is mod 2**16 -- an unsigned number type
for Index'Size use 16 -- allot sixteen bits for this type
type Int16 is range -2 ** 15.. 2**15 - 1; -- a signed integer number type
for Int16'Size use 16; -- allot sixteen bits for this type
type Int32 is range -2 ** 31 .. 2**31 - 1 -- a signed integer numeric type
for Int32'Size use 32; -- allot 32 bits for this type

3.9 Composite Types

There is a slight deviation in orthogonality in meaning of subtypes in the Ada Language Reference
Manual. This discussion relates to the reserved word, subtype, not the compiler design model.

Ada Distilled by Richard Riehle

 Page 22 of 117

Composite types contain objects/values of some other type. There are four general categories of composite
types: arrays, records, task types, and protected types. An array has components of the same type. A
record may have components of different types. Task types and protected types are discussed later.

3.9.1 Arrays

An array may have components of any type as long as they are all the same storage size. Ada has three
main options for array definition: anonymous, type-based unconstrained, type-based constrained. Other
combinations are possible, but not discussed in this book. Ada allows true multi-dimensional arrays, as
well as arrays of arrays. Two common formats for a one dimensional array are:

type Array_Type is array(Index_Type range <>) of Component_Type; -- One dimensional unconstrained array
type Array_Type is array(Range_Constraint) of Component_Type; -- One dimensional constrained array

Ada also has something called anonymous arrays. An anonymous array is less flexible than a typed array
and cannot be passed as a parameter to a subprogram. We will not use them much in this book.

3.9.1.1 Array Procedural Example

The following procedure demonstrates a constrained array and an unconstrained array, along with
declarations and some procedural behavior. The constrained array is a boolean array. We show this array
because of its special properties when used with logical or, and, and xor. The unconstrained array simply
demonstrates that an unconstrained array must be constrained before it may be used.

with Ada.Text_IO; -- 1 Context clause
use Ada; -- 2 Visibility clause
procedure Array_Definitions is -- 3
 package BIO is new Text_IO.Enumeration_IO(Enum => Boolean); -- 5 IO package for Boolean type
 type Boolean_Set is array(1..4) of Boolean; -- 6 Constrained boolean array
 pragma Pack(Boolean_Set); -- 7 Forces array to four bits
 for Boolean_Set'Alignment use 2; -- 7.1 Align storage on 2 bytes
 type Float_Vector is array(Natural range <>) of Float; -- 8 Unconstrained array
 -- Note that the index is of type Natural and can be any range of values from 0 through Integer'Last
 B1 : Boolean_Set := (True, True, True, False); -- 9
 B2 : Boolean_Set := (False, False, True, False); -- 10
 B3 : Boolean_Set := (True, True, False, True); -- 11
 F1 : Float_Vector(0..9) ; -- 12
 F2 : Float_Vector(1..10); -- 13
 procedure Display (Data : Boolean_Set; Comment : String) is -- 14
 begin -- 15
 Text_IO.Put(Comment); -- 16
 for I in Data'Range loop -- Cannot run off the end of an array -- 17
 BIO.Put(Data(I)); -- 18
 Text_IO.Put(" "); -- 19
 end loop; -- 20
 Text_IO.New_Line; -- 21
 end Display; -- 22
begin -- 23
 F1(2) := F2(4); -- 24 Simple component assignment
 F1(5..7) := F2(6..8); -- This is sometimes called "sliding" -- 25 Assign slices of different sizes
 Display (B1, "B1 is "); Display(B2, "B3 is "); Display(B3, "B3 is "); -- 26
 Display (B2, "B2 is "); -- 27
 B3 := B1 and B2; -- 28 Logical and of B1 and B2
 Display(B3, "B1 and B2 = "); -- 29
 B3 := B1 or B2; -- 30 Logical or of B1 and B2
 Display(B3, "B1 or B2 = "); -- 31
 B3 := B1 xor B2; -- 32 Logical xor of B1 and B2

procedure Display factors
out the responsibility for
displaying the results of the
boolean operations in the
body of this example.

Bitwise Logical operators
and, or, and xor may be
used on a boolean array.

Ada Distilled by Richard Riehle

 Page 23 of 117

 Display(B3, "B1 xor B2 = "); -- 33
end Array_Definitions; -- 34

Line 8, in the previous program illustrates an unconstrained array. When an array is declared as
unconstrained, a constrained instance of it is required before it can be used in an algorithm. Here are some
other examples of one dimensional, arrays, constrained and unconstrained:

type Float_Vector is array(Integer range <>) of Float; -- One dimensional unconstrained array
type Float_Vector is array(-473..451) of Float; -- One dimensional constrained array
type Day is (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday);
type Float_Vector is array(Day) of Integer; -- One dimensional constrained array

Note that an array index can be any discrete type and does not have to begin with zero. Also, type String,
defined in package Standard is defined as an unconstrained array with a Positive index type. All the
operations permitted on ordinary arrays are also permitted on Strings.

3.9.1.2 Multi-dimensional Arrays

Ada allows both multiple-dimension arrays such as those found in Fortran or arrays of arrays such as those
in the C family of languages. There is no language defined limit of number of dimensions. For example,

type Float_Matrix is array(Integer range <>, Positive range <>) of Float; -- Two dimensional array
type Bool_Matrix is array (Natural range <>, -- First dimension of three
 Positive range <>, -- Second dimension of three
 Color range <>) of Boolean; -- Third dimension of three
type Mat_Vector is array (Positive range <>) of Float_Matrix(1..20, 5..15); -- One dimension of two dimensions

3.9.1.3 Array Initialization

In Ada, arrays may be initialized using a concept called an aggregate. The word aggregate is not a
reserved word, but it is an important part of the language. An unconstrained array may include an
aggregate at the time it is constrained. Any array may be re-initialized with a new aggregate in the
algorithmic part of a module. The rule is that an aggregate must be complete. That is, every component
must be included in the aggregate. Here are some examples, using the definitions already shown in this
section (2.5.9.1).

For one dimensional array:

V1 : Float_Vector (1..6) := (others => 0.0); -- Instance initialized to all 0.0
V2 : Float_Vector (1..3) := (1 => 12.3, 3 => 6.2, 2 => 9.4); -- Instance with initial values
V3 : Float_Vector (0..120) := (0 => 2.6, 120 => 7.5, others => 9.4); -- others must appear last
V4 : Float_Vector (12..80) := (12 => 16.3, 20 => 6.2, others => 1.5); -- Instance with initial values
V5 : Float_Vector (-473..-1) := (others => Float'First); -- Negative index range

In the above instances, V1 has six elements and is initialized to all 0.0, V2 has three elements and is
initialized using named association. Named association allows the programmer to associate a component
value with a named index. V3 has 121 elements. It is initialized using named association with an others
option. V4 has 68 elements, starting with an index of 12.

In Ada, an integer type index value may begin anywhere in the number range. It may even be a negative
value, as in example V5. The value of V4'First is 12. The index bound of V4'Range is 12 through 80.

For a two dimensional array:

See unconstrained array, Float_Vector, defined in the previous section.

Ada Distilled by Richard Riehle

 Page 24 of 117

 M1 : Float_Matrix(1..10, 1..10) := (1 => (1 => 0.0, others => 1.0), -- 1 Named association for each
 10 => (10 => 0.0, others => 1.0), -- 2 dimension of the array and
 others => (others => 1.0)); -- 3 others specified last

If you wanted to write a loop that would use Text_IO to display all of the values for M1 on a console, it
might look like the following code,

for I in M1'Range(1) -- 1 Range(1) specifies first dimension of array
 loop -- 2 outer loop; should have been named
 for J in M1'Range(2) -- 3 Range(2) specifies second dimension of array
 loop -- 4 Always name nested loops in production code
 Text_IO.Put(Float'Image(M1(I, J)) & " "); -- 5 Convert component to text and print it
 end loop; -- 6
 Text_IO.New_Line; -- 7 Carriage return/Line feed on display
 end loop; -- 8

3.9.1.4 Array Catenation

One of the more useful operations on arrays is catenation. Catenation is predefined in the language using
the ampersand (&) symbol. As with most operators, you may overload the catenator operator. The rules
for catenation are in ALRM 4.5.3/4. Taking the Float_Vector, defined above, we can have the following:

V10 : Float_Vector (1..10) := V1 & V2 & 42.9; -- Catenate 42.9, V1 and V2

Often it is useful to catenate a value of a different type after converting it to an appropriate representation.
Let's say we have a variable,

 Bango : Integer := 451; -- bango is the Japanese word for number.

Suppose we want to display the value of Bango on the video display. We could do the following:

 Ada.Text_IO.Put_Line("Paper burns at " & Integer'Image(Bango) & " Farenheit ");

This prints a string to the screen. The ampersand catenates the result of the image attribute (as if it were a
built-in function) which in turn is catenated to the constant string, Farenheit, (notice the leading space to
make formatting more readable). Attributes help to make Ada programs more portable.

3.9.2 Records

Ada records come in several forms, many of which are not covered in this book. Some of the record
forms such as variant records, unconstrained records, and discriminated records, are not important to the
novice. This book is not concerned with advanced or seldom used language features. However, we will
include a few examples of constrained records, some records with a single discriminants , and some tagged
records for the student's future study. The following Ada package specfication declares some record types.

package Record_Declarations is -- 1 This specification might require a pragma Elaborate_Body
 type Library_Book is -- 2 Simple constrained record
 record -- 3 reserved word, record
 ISBN : String (1..12); -- 4 String component
 Title : String(1..30); -- 5 String component
 Author : String(1..40); -- 6 String component
 Purchase_Price : Float; -- 7 Floating point component
 Copies_Available : Natural; -- 8 Subtype natural from package Standard
 end record; -- 9 Must identify end of scope of each record
 -- 10
 type Message_1 is -- 11 Simple record with an

Some prefer the word concatenation; same idea.

Ada Distilled by Richard Riehle

 Page 25 of 117

 record -- 12 unconstrained data type
 Text : Unbounded_String; -- 13 See ALRM A.4.5
 Length : Natural; -- 14 See package Standard
 end record; -- 15
 -- 16
 type Message_2 (Size : Positive) is -- 17 Record with a discriminant
 record -- 18 This must be constrained before
 Text : String(1..Size); -- 19 it may be used. Note that the Size
 Length : Natural; -- 20 has a corresponding entry in the record
 end record; -- 21 Dynamically allocated records might not
 -- 22 be as efficient as you would like.
 type Message_3 (Size : Positive := 1) is -- 23 Record with a default discriminant
 record -- 24 This may be constrained or may use
 Text : String(1..Size); -- 25 the default constraint. There are more
 Length : Natural; -- 26 rules for this, but we defer them to an
 end record; -- 27 advancd discussion of the language
 -- 28
 type Message_4 is tagged -- 29 A tagged type. This may be extended
 .record -- 30 with more components
 Text : Unbounded_String; -- 31 Unbounded String(See Ada.Fixed.Unbounded).
 Length : Natural; -- 32
 end record; -- 33
. -- 34
 type Message_5 is new Message_4 with -- 35 Derived from a tagged type and one
 record -- 36 additional component. This record now x
 Stamp : Calendar.Time -- 37 has a total of three components, those
 end record; -- 38 it inherits and the one defined within it.
 -- 39
 type Message_6 is -- 40 Record containing another record
 record -- 41
 Message_Data : Message_1; -- 42 See line 11
 Library_Data : Library_Book; -- 43 See line 2
 end record; -- 44.
end Record_Declarations; -- 45 This package might require a pragma Elaborate_Body

The package, Record_Declarations, has no subprograms. Therefore, the rules of the language might
require a special pragma (compiler directive) to advise the compiler when there is a package body.

Note that, on line 35, the type Message_5 is derived from and extended from Message_4. This is a form
of inheritance. We could have the following:

 M4 : Message_4;
 M5 : Message_5;
 ...
 M4 := Message_4(M5); -- provide a Message_4 view of the object of derived type, Message_5
or

 M5 := (M4 with Library_Book); -- extends M5 with necessary components during assignment

In the case of the assignment to M4, the target of the assignment is provided a view of M5 that is restricted
to components in a type Message_4. However, the tag of the object does not change and the content
remains stable. This has important implications. Consider the following package.

with Record_Declarations; use Record_Declarations; -- 1
package Messenger_Processes is -- 2
 procedure Display (The_Data : Message_4); -- 3
 procedure Display (The_Data : Message_5); -- 4
 procedure Print (Print_Data : Message_4'Class); -- 5
 procedure Process (Process_Data : in out Message_4); -- 6
end Messenger_Process; -- 7

Note that some Ada
practitioners believe this
kind of record is not a
good idea. Since the
Size might be variable at
run-time, each compiler
will have a unique way
of addressing how to
best implement the code

ty
pe

 e
xt

en
si

on

Ada Distilled by Richard Riehle

 Page 26 of 117

package body Messenger_Processes is -- 1
 procedure Display (The_Data : Message_4) is -- 2
 begin -- 3
 -- display the data for Message_4 -- 4
 end Display; -- 5
 procedure Display (The_Data : Message_5) is -- 6
 begin -- 7
 -- display the data for Message_5 -- 8
 end Display; -- 9
 procedure Print (Print_Data : Message_4'Class) is -- 10
 begin -- 11
 Display (Print_Data); -- 12
 end Print; -- 13
 procedure Process (Process_Data : in out Message_4) is -- 14
 begin -- 15
 -- perform some algorithms -- 16
 Print(Process_Data); -- 17
 end Process; -- 18
end Messenger_Process; -- 19

Suppose we called Process with the following statement:

 Process(Message_4(M5)); -- see the immeditately preceding example

The procedure Process does its work and then calls Print. Print has a classwide parameter. The tag of the
object operated upon in Process corresponds to Message_5. The result is a call to the correct version of
Display for Messsage_5 because of the tag. All information originally included in M5 is intact because a
view conversion does not change the data or the tag. This is called re-dispatching. For a full discussion
of inheritance and dispatching, see Chapter Nine of this book.

4. Control Structures for Algorithms

Even in an object-oriented language, there comes the point where we must actually code the algorithmic
implementation. Ada has a rich set of algorithmic constructs that are easy to code and easy to read.

4.1 Iteration Algorithms in Ada

One of the three fundamental building blocks of every computer program is iteration. In nearly every
serious program there is at least one loop. I realize some enthusiasts of recursion and/or functional
programming (LISP, ML, CLOS, Haskell, etc.) may object to this statement.

4.1.1 For Loops

A for loop is simple in Ada. Every loop must have an end loop. The type of the index is derived from the
type of the range variables. The scope of the index is the scope of the loop. The index is never visible
outside the loop. Also, during each iteration of the loop, the index is a constant within the loop; that is, the
index of a loop may not be altered via assignment. Iteration safety is fundamental to Ada.

with Ada.Integer_Text_IO; -- 1 Put Library Unit in Scope; A.10.8/21
procedure Sawatdee (Start, Stop : in Integer) is -- 2 "Good morning" in Thailand; 6.2
begin -- 3 Required to initiated sequence of statements
 for I in Start..Stop -- 4 I is a constant to the loop in each iteration; 5.5/9

Test before loop

The famous proof in Italian by Jacopini and Bohm is important here since it is a foundation idea for program structure. From their proof, we understand the
three fundamental control structures for imperative languages to be: sequence, iteration, and selection

Ada Distilled by Richard Riehle

 Page 27 of 117

 loop -- 5 Reserved word loop is required; 5.5
 Ada.Integer_Text_IO.Put(I); -- 6 Note the use of “dot notation” to achieve visibility; A.10.8
 end loop; -- 7 end loop is required for every loop; 5.5
end SaWatDee; -- Ada is not case sensitive! -- 8 Note the label for the enclosing procedure; 6

An Ada enumerated type is an ordered set and may be used as the index of a loop. Also, the machine
values for the enumerated type are not necessarily simple numbers as they are in C of C++. You will not
need to do arithmetic on them. For an enumerated type, declared as:

type Week is (Sun, Mon, Tue, Wed, Thu, Fri, Sat); -- An enumerated type is an ordered set; (Sun < Mon)

consider the following loop.

with Ada.Text_IO; -- 1 Put Library Unit in Scope; 8.2, 10.1.2
procedure Dobroe_Uutra is -- 2 "Good morning" in Russian
begin -- 3 Required to initiated sequence of statements
 Loop_Name: -- 4 This is a named loop; good coding style; 5.5
 for Index in Week -- 5 Loop index may be any discrete type
 loop -- 6 Reserved word loop is required; 5.5
 Ada.Text_IO.Put(Week’Image(Index)); -- 7 ‘Image converts Value to Text for printing
 end loop Loop_Name; -- 8 The name is required if the loop is named; 5.5
end Dobroe_Uutra; -- 9 Note the label for the enclosing procedure

Next consider an anonymous array with a range from fifteen through sixty. We can traverse this with a
simple loop statement and a 'Range attribute. There can be no indexing off the end of the array.

 Set : array (15..60) of Integer;

consider the following loop with a loop label,

with Text_IO; -- 1 Put Library Unit in Scope
procedure Magandang_Umaga is -- 2 "Good morning" in Tagalog (language of Phillipines)
begin -- 3 Required to initiated sequence of statements
 Outer: -- 4 This is a named loop; good coding style
 for Index in Set’Range -- 5 Index'First = 15; Index'Last = 60
 loop -- 6 Traverse the anonymous array
 Text_IO.Put(Integer’Image(Index)); -- 7 ’Image converts Integer to Text for printing
 Text_IO.Put_Line(Integer’Image(Set(Index))); -- 8 Print the value in the array using ‘Image
 Inner: -- 9 Give the inner loop a name
 for Day in Week loop -- 10 Note how we use type name for the range
 Text_IO.Put(Week’Image(Day)); -- 11 Convert the Day to Text for printing
 end loop Inner; -- 12 The name of the loop is required
 end loop Outer; -- 13 The name is required if the loop is named
end Magandang_Umaga; -- 14 Note the label for the enclosing procedure

Lines 7, 8, and 11 have code with the 'Image attribute. Check ALRM, Annex K/88 for details. Line 5
could have been coded as, for Index in Set'First .. Set'Last loop …

Sometimes you need to traverse a for loop in reverse. Line 5, above could have been coded as,

 for Index in reverse Set’Range -- 5 Cannot code: for Index in 60..15 loop

A for loop might be used to traverse a two dimensional array. A nested loop will be required. Always
label each loop when coding a nested loop. Here is the declaration of such an array.

type Matrix is array (Positive range <>, Natural range <>) of Integer; -- an unconstrained Matrix

procedure Process (M : in out Matrix) is -- 1 Specification for the procedure
begin -- 2 Simple begin
 Outer: -- 3 Label for outer loop
 for I in M'Range(1) loop -- 4 M'Range(1) is first dimension of array
 Inner: -- 5 Label for nested loop

Always label
loops in
production code.
It helps with both
maintenance and
documentation

Always use
loop labels
when coding
nested loop
structures

an anonymous array; one of a kind; no named type

Remember, the
apostrophe when
used as a qualifier
in a statment is
pronounced "tick"

Ada Distilled by Richard Riehle

 Page 28 of 117

 for J in M'Range(2) loop -- 6 M'Range(2) is second dimension
 -- do some actions on the matrix -- 7 Algorithmic statements
 end loop Inner; -- 8 Inner end loop
 end loop Outer; -- 9 Outer end loop
end Process; -- 10 End of procedure scope

4.1.2 While Loops ALRM 5.5

A while loop is often the preferred type of loop in structured programming.

with Text_IO; -- 1 Put a library unit in scope
procedure Jo_Regelt is -- 2 "Good morning" in Hungarian
 The_File : Text_IO.File_Type; -- 3 Declare internal file handle
 As_Input : constant Text_IO.File_Mode := Text_IO.In_File; -- 4 Is it input or output
 External_Name : String := “C:\Data\My.Txt”; -- 5 Declare the external file name
 The_Data : String (1..80); -- 6 A simple string variable;
 Line_Length : Natural; -- 7 For the input line parameter
begin -- 8 Required to initiate a sequence of statements
 Text_IO.Open(The_File, As_Input, External_Name); -- 9 See Text_IO for the types of the parameters
 Input_Routine: -- 10 You may name any kind of loop, and should!
 while not Text_IO.End_Of_File(The_File) -- 11 Read The_File until finding the EOF mark
 loop -- 12 Reserved word loop is required
 Text_IO.Get_Line(The_File, The_Data, Line_Length); -- 13 Get a delimited string from the file
 Text_IO.Put_Line(The_Data(1..Line_Length)); -- 14 Echo the string with carriage / return line feed
 end loop Input_Routine; -- 15 end loop name is required if the loop is named
end Jo_Regelt; -- 16 Note the label for the enclosing procedure

 The following while loop uses the Get_Immediate feature of Ada.Text_IO, ALRM A.10.1/44.

with Ada.Text_IO; -- 1 Correct context clause
with Ada.Characters.Latin_1; -- 2 Replaces Ada 83 package ASCII
procedure Hello_By_Input is -- 3 Long procedure name
 ESC : Character renames Ada.Characters.Latin_1.Esc; -- 4 A.3.3/5; Ada is not case sensitive
 Input : Character := Ada.Characters.Latin_1.Space; -- 5 Initial value for Variable
 Index : Natural := 0; -- 6 package Standard, A.1/13
 Hello : String(1..80) := (others => Input); -- 7 Input is intialized as space
begin -- 8 Normally comment this line
 Ada.Text_IO.Get_Immediate(Input); -- 9 ALRM A.101./44
 while Input /= ESC loop -- /= is Ada "not equal" symbol -- 10 Negative condition while loop
 Ada.Text_IO.Put(Input); -- Echo input -- 11 Only Echo if it is not ESC
 Index := Index + 1; -- 12 Need to maintain own index
 Hello(Index) := Input; -- 13 Assign the input to the string
 Ada.Text_IO.Get_Immediate(Input); -- 14 No need to press enter key
 end loop; -- 15 Every loop needs an end loop
 Ada.Text_IO.New_Line; -- 16 Carriage Return/ Line Feed
 Ada.Text_IO.Put_Line(Hello); -- 17 Put the string and advance one line
end Hello_By_Input; -- 18 Must be same name as procedure

The above loop could be coded to avoid the while condition and simply do an exit. This would eliminate
the initial Get_Immediate on Line 9 but would require an if statement to effect the exit.
Sometimes we want to exit a loop before we reach the pre-defined conditions. This can be used for a loop
with no conditions or a loop in which some associated value goes abnormal. Exit can emulate the Pascal
repeat ... until construct. There are several forms of the exit: exit when, if condition then exit, and the
simple unconditional exit. For each form, the careful programmer will include the name of the loop.

4.1.3 Exit Loop ALRM 5.7

with Text_IO; -- 1 Put a library unit in scope
procedure Salaam_Ahlay_Kham is -- 2 Parameterless declaration

Test after loop

Ada Distilled by Richard Riehle

 Page 29 of 117

 The_File : Text_IO.File_Type; -- 3 Declare internal file handle
 As_Input : Text_IO.File_Mode := Text_IO.In_File; -- 4 Is it input or output
 External_Name : String := “C:\Data\My.Txt”; -- 5 Declare the external file name
 The_Data : String(1..80) := (others => ‘ ‘); -- 6 Constrained, initialized string
 Line_Length : Natural; -- 7 For the input line parameter
begin -- 8 Required to initiated sequence of statements
 Text_IO.Open(The_File, As_Input, External_Name); -- 9 See Text_IO for the types of the parameters
 Controlled_Input: -- 10 You may name any kind of loop, and should
 loop -- 11 Unconditional loop statement
 Text_IO.Get(The_File, The_Data, Line_Length); -- 12 Get a delimited string from the file
 exit Controlled_Input -- 13 Note the use of the label name
 when The_Data(1..2) = “##”; -- 14 A conditional exit; should always be labled
 Text_IO.Put_Line(The_Data(1..Line_Length)); -- 15 Print the string with carriage return/line feed
 end loop Controlled_Input; -- 16 The name is required if the loop is named
end Salaam_Ahlay_Kham; -- 17 Note the label for the enclosing procedure

Pay attention to line 10 in this example. A loop label makes this kind of loop easier to maintain. Many
Ada practitioners suggest you never use an exit without a label. For consistency checking, the compiler
will require the name of the loop at the end loop statement if there is a label. Here is some alternative
syntax for lines 13 through 14 of the loop in P5, above,

if The_Data(1..2) = "##" then -- 13 An if statement to control the exit
 exit Controlled_Input; -- 14 Exit a loop with a label name
else --
 ... --
end if; --

The exit statement only works within a loop. The syntax and rules of the if statement are discussed in the
next section.

4.2 Selection Statements

Selection comes in two flavors. There is the alternation form, usually represented as an if ...end if, and the
multiway selection, often coded as a case ... end case. Ada allows a multiway selection with an elsif in an
if statement. As is true of every elementary structure, there is an entry point and a well-defined end of
scope.

4.2.1 If Statements ALRM 5.3

The ordinary if statement in Ada is not very complicated. The rule is that every if must have an “end if.”
Also, unlike Pascal, an if condition may be compound. There is a reserved word, elsif, which permits a
kind of multi-way condition selection. The following example is somewhat contrived, but it does illustrate
the idea of the if along with the elsif. The most important thing to observe about elsif is that it might drop
through all conditions if none are true. Therefore, you will almost always want a final else, even though it
is not required by the language. If you fall through all possibilities in a function you may never reach a
return statement which will cause the RTE to raise a Program_Error (ALRM, A.1/46) as an exception.

function Select_Option (A,B,C : Float) return Float is -- 1 Parameterized function
 Result : Float := 0.0; -- 2 Local Variable for return statement.
begin -- 3 Required to initiate sequence of statements
 if A > B then -- 4 Simple logical comparison
 Result := A ** 2; -- 5 Exponentiation of A; 4.5.6/7
 elsif A < B then -- 6 Note the spelling;4.5.2/9
 Result := B ** 2; -- 7 4.5.6/7
 elsif A <= C then -- 8 4.5.2/9
 Result := C * B; -- 9 4.5.5

Ada Distilled by Richard Riehle

 Page 30 of 117

 else -- 10 Optional else; but always include it
 Result := C * A; -- 11 4.5.5
 end if; -- 12 Try to have only one return statement.
 return Result; -- 13 If no return is found, compiler will reject the code
end Select_Option -- 14 Always label a subprogram end statement

The if statement is legal for nearly every Ada data type. Some types designated as limited have no
predefined equality or relational testing but do permit membership if tests. Record types and private types
have predefined if tests for equality and membership. The creator of a limited type may define an equality
or relational operator. For a private type or record the designer may overload equality or define a relational
operator. Sometimes it is better to create an entirely new operation such as Is_Equal or Is_Greater For
example, using the data type, Inventory, defined in Section 3.3..3, Line 12.

function "=" (L, R : Inventory) return Boolean; -- Specify an equality operator; operator overloading
function Is_Equal (L, R : Inventory) return Boolean; -- Specify an equality operation; Could be more readable
function ">" (L, R : Inventory) return Boolean; -- Specify an greater-than operator

An implementation of "=" might look like this

function "=" (L, R : Inventory) return Boolean is -- 1 Redefines (overloads) an equal operator
begin -- 2 The usual begin statement
 return L.ID = R.ID; -- 3 Compare only the ID part.
end "="; -- 4 Required scope terminator

An implementation of ">" might look like this

function ">" (L, R : Inventory) return Boolean is -- 1 Redefines (overloads) ">" operator
begin -- 2 The usual begin statement
 return L.ID > R.ID; -- 3 Compare only the ID part.
end "="; -- 4 Required scope terminator

There is also a form of the if statement called short-circuit form. This takes two syntactic formats:and
then and or else. The and then format explicitly indicates that when comparison of the first operand
fails, ignore the second operand. The or else format says if expression in the first operand is not TRUE,
evaluate the second operand. If it is TRUE, then don't bother to evaluate the second operand.

4.2.2 Membership Testing 4.5.2/2

Sometimes you want a simple membership test. The in and not in options permit testing membership of a
value within a type or type range. Membership test is permitted for any data type.

function Continue(Data : Item) return Boolean is -- 1 Parameterized function
 Result : Boolean := False; -- 2 Initialized return variable.
begin -- Continue -- 3 Comment the begin statement
 if Data in 1..20 then -- 4 Simple membership test for a range
 Result := True; -- 5 Set the result
 end if; -- 6 Always need an end if
 return Result; -- 7 At least one return statement; required
end Continue; -- 8 Always label the end statement

or for a data type derived from another type

type Bounded_Integer is new Integer range -473..451; -- Derived type; derived from Standard Integer

procedure Demand -- 1 Procedure Identifier
 (Data : in out Bounded_Integer'Base) is -- 2 Parameter list for Base type
 Local : Bounded_Integer'Base := 0; -- 3 Initialized variable.
begin -- Demand -- 4 Comment the begin statement
 Data := Data + Local; -- 5 Increment by value of Local
 if Data in Bounded_Integer then -- 6 Simple membership test for a range

Tip: This is one of those powerful Ada syntactic constructs that can make code more readable and easier to maintain.

In code examples, see procedure

Ada Distilled by Richard Riehle

 Page 31 of 117

 null; -- 7 Some Action
 end if; -- 8 Always need an end if.
end Demand; -- 9 Use a label for the end statement

4.2.3 Case Statements ALRM 5.4

Ada case statements are easy and consistent. Unlike pathological case constructs in the C family of
languages, Ada never requires a “break” statement. A case statement only applies to a discrete type such
as an integer or enumerated type. When coding a case statement, all possible cases must be covered. The
following case statement illustrates several of these ideas. Consider an enumerated type, Color defined as:

type Color is (White, Red, Orange, Yellow, Chartreuse, Green, -- The values are the names of the
 Blue, Indigo, Violet, Black, Brown); -- colors. No need for numerics

The following function evaluates many of the alternatives.

function Evaluate (C : Color) return Integer is -- 1 Simple function declaration
 Result : Integer := 0; -- 2 Local variable
begin -- Evaluate -- 3 Comment the begin statement
 case C is -- 4 Start a case statement
 when Red => Result := 1; -- 5 The => is an association symbol
 when Blue =>Result := 2; -- 6 Am I blue? Set result to 2
 when Black .. Brown => Result := 3; -- 7 For black through brown ...
 when Orange | Indigo => Result := 4; -- 8 For either orange or indigo
 when others => Result := 5; -- 9 others required for unspecified cases.
 end case; -- 10 Must use others if any cases are not specified
 return Result; -- 11 Compiler will look for a return statement
end Evaluate; -- 12

Sometimes, when a case statement result requires a long sequence of statements, consider using a begin..
end block sequences (see above discussion on blocks). Always label a begin..end block.

function Decide (C : Color) return Integer is -- 1 Simple function declaration
 Result : Integer := 0; -- 2 Local variable
begin -- Decide -- 3 Comment the begin statement
 case C is -- 4 Start a case statement
 when Red => -- 5 One of the enumerated values
 begin -- 6 An unlabeled begin ... end sequence; see 4.4
 -- sequence-of-statements -- 7 Any sequence of Ada statements
 end; -- 8 Unlabeled end statement
 when Blue => -- 9 One of the enumerated values
 Label_1: -- 10 Better style; use a block label
 begin -- 11 Alternative: consider calling nested subprogram
 -- sequence-of-statements -- 12 A labeled begin requires label name at end
 end Label_1; -- 13 The label is required for the end statement
 when others => -- 14 Ada requires others if some choices are unmentioned
 Label_2: -- 15 Yes. Still using the label; label an embedded begin block
 begin -- 16
 -- handled-sequence-of-statements -- 17 We expect a local exception handler.
 exception -- 18 This is a good use of begin...end blocks
 -- sequence-of-statements -- 19 The exception handling statements
 end Label_2; -- 20 The compiler will look for this
 end case; -- 21 Scope terminator is required
 return Result; -- 22 Compiler will look for a return statement
end Decide; -- 23 As usual, label the end statement

On line 14, the when others is required when some possible choices are not explicitly stated. An Ada
compiler checks for the label at the end of a labeled begin..end block. If there is a when others and there

It is not always a good idea to
initialize variables. You might
get a valid result even if there is
an error in the algorithm.

Ada Distilled by Richard Riehle

 Page 32 of 117

are no other choices, the compiler issues an error message. Lastly, a choice may be stated only once. If
you repeat the same choice, the Ada compiler will pummel you about the head and shoulders soundly.

4.3 Blocks

As shown in the preceding example, Ada allows the programmer to label in-line blocks of code.
Sometimes these are labled loops. Other times they are simply short algorithmic fragments. A block may
even include localized declarations. This kind of block is called a "declare block." Some Ada
programming managers think in-line declare blocks are a reflection of poor program planning. In spite of
that, they appear often in production code. In fact, a declare block is the only way to declare a local
variable for a code fragment.

4.3.1 Begin ... End Blocks ALRM 5.6

This is a useful feature of Ada for trapping exceptions and sometimes for debugging. Good coding style
suggests that they be labeled. Some Ada practitioners suggest using a labeled begin end with a case
statement as noted in Section 3.3.3 of this book.

with Ada.Text_IO, -- 1 Note the comma instead of semicolon
Ada.Integer_Text_IO; -- 2 Predefined package for Integer I/O
function Get return Integer is -- 3 Parameterless function
 package IIO renames Ada.Integer_Text_IO; -- 4 Make the name shorter via renames clause
 package TIO renames Ada.Text_IO; -- 5 Make the name shorter
 Data : Integer := -0; -- 6 In scope for all of P8
 Try_Limit : constant := 3; -- universal integer constant -- 7 A constant cannot be changed
 Try_Count : Natural := 0; -- 8 Natural cannot be less than zero
begin -- 9 Required to initiated sequence of statements
 Input_Loop: -- 10 Optional label for the loop
 loop -- 11 Required reserved word
 Try_Block: -- 12 Always name a begin..end block
 begin -- 13 Start begin ... end block
 Try_Count := Try_Count + 1; -- 14 Increment a variable by one
 IIO.Get(Data); -- 15 Convert external text to internal number
 exit Input_Loop; -- 16 unconditional loop exit
 exception -- 17 Placed between begin ... end sequence
 when TIO.Data_Error => -- 18 Exception handling
 if Try_Count > Try_Limit then -- 19 Decide whether to exit the loop
 Text_IO.Put_Line(“Too many tries"); -- 20 Because the Try_Count is too high
 exit Input_Loop; -- 21 exit the loop
 end if; -- 22 Every if requires an end if
 end Try_Block; -- 23 The label is required if block is labeled
 end loop Input_Loop; -- 24 Loop is labeled so label is required
 return Data; -- 25 One return statement for this function
end Get; -- 26 Always label a subprogram end statement

Ada Distilled by Richard Riehle

 Page 33 of 117

4.3.2 Declare Blocks ALRM 5.6

A declare block is an in-line block of code which includes some local declarations. The scope of the
declarations ends with the end statement of the block. If any local name is the same as some other name in
the enclosing scope, the local name is the only one directly visible.

with Text_IO; (properly, Ada.Text_IO, but this works too) -- 1 Put a library unit in scope
procedure Tip_A is -- 2 Parameterless declaration
 Rare_E : Float := 2.72; -- natural number, e -- 3 A rare E; see ALRM A.5
 Data : Integer := 42; -- 4 In scope for entire procedure
begin -- 5 Required to initiate sequence of statements
 Text_IO.Put(Integer’Image(Data)); -- 6 What will print? Integer is converted to a string
 declare -- 7 begin a new scope (declarative region)
 Data : Float := 3.14; -- a short slice of pi -- 8 Hide visibility of Integer, Data; see ALRM A.5
 begin -- 9 [optionally Handled] sequence of statements
 Text_IO.Put(Float’Image(Data)); -- 10 X‘Image is allowed for Floating Point
 end; -- 11 A scope terminator is required
 Text_IO.Put(Float'Image(Rare_E)); -- 12 A long way to tip a rare e.
end Tip_A; -- 13 Always include a unit name

You may want to access the Data from an outer scope within a declare block. Names in an outer scope,
with names in conflict with those within a declare block, can be made visible with “dot notation.” It is
sometimes observed that declare blocks can be used for ad hoc routines that someone forgot to design into
the software. For this reason, some Ada practitioners recommend frugality when using them. Also,
because declare blocks can be so easily sprinkled through the code, it is essential that production declare
blocks are always labeled. The following declare block illustrates several of these points.

with Ada.Text_IO; -- 1 Put a library unit in scope and make it directly visible
with Ada.Integer_Text_IO, Ada.Float_Text_IO; -- 2 Predefined numeric IO packages
with Ada.Numerics; -- 3 ALRM, Annex A.5
procedure P7 is -- 4 Parameterless declaration
 package IIO renames Ada.Integer_Text_IO; -- 5 Make the name shorter via a renames clause
 X : Integer := 42; -- 6 In scope for entire procedure
begin -- 7 Required to initiate sequence of statements
 IIO.Put(X); -- 8 What will print?
 Local_Block: -- 9 Always name a declare block
 declare -- 10 begin a new scope (declarative region)
 use Ada.Float_Text_IO; -- 11 controversial localization of use clause
 X : Float := Ada.Numerics.Pi; -- 12 Hide visibility of global Integer, P7.X
 begin -- 13 [optionally Handled] sequence of statements
 Put(X); -- 14 Put is visible because of “use clause”
 IIO.Put(P7.X); -- 15 Dot qualifier makes Integer X visible
 end Local_Block; -- 16 Labeled end name required for labeled block
end P7; -- 17 Always label a subprogram end statement

Tip: Consider promoting a declare block to a local (nested) parameterless procedure in the declarations of the enclosing unit. This is
more maintainable. It can be made more efficient with an inline pragma.

Ada Distilled for Ada 2005 by Richard Riehle

 Page 34 of 117

5. Access Types (Pointers)

5.1 Overview of Access Types

The British computing pioneer, Maurice Wilkes, is credited with inventing indirection. Indirection is a
generalized notion of a pointer. According to Dr. Wilkes, "There is no problem in computer programming
that cannot be solved by not adding yet one more level of indirection." Pointers, in many languages have
been problematic. The C family of languages encourages one to do arithmetic on pointers, thereby
creating some really tricky errors. Ada pointers, called access types, do not have default capability for
pointer arithmetic. Java, to its credit, adopted some of the Ada philosophy on pointers. Whenever we use
the term pointer in Ada, we really mean access type or access object. When we refer to an access type, we
are referring to a pointer with a default a set of safe rules and no arithmetic operators.

There are three forms of access type.
 Access Type Form Terminology

• Access to a value in a storage pool storage pool access type
• Access to a declared value general access type
• Access to a supbprogram (procedure or function) access to subprogram type

Every access type is type specific to some designated type.

type Reference is access Integer; -- Can only point to predefined type Integer; storage pool access type
type Float_Reference is access all Float; -- Can only point to predefined type Float; general access type
type Container is limited private; -- Defines a data type with limited format; ordinary limited type
type Container_Pointer is access all Container; -- Can only point to objects of type Container; access to a limited type
type Method is access procedure … ; -- Points to a procedure with corresponding parameter profile
type Method is access function … ; -- Points to function with corresponding parameter profile and return type

5.2 Storage Pool Access Type

A storage pool access type requires an associated set of storage locations for its allocation. This might be a
simple heap operation, or the serious Ada programmer can override the operations in System.Storage_Pool
to enable some form of automatic garbage collection within a bounded storage space.

with Ada.Integer_Text_IO; use Ada; -- 1 Library package for Integer IO
procedure Access_Type_1 is -- 2
 type Integer_Pointer is access Integer; -- 3 Storage pool access type
 Number : Integer := 42; -- 4 Declared value
 Location : Integer_Pointer; -- 5 Storage pool access value
begin -- 6
 Location := new Integer; -- 7 The word new is an allocator
 Location.all := Number; -- 8 all permits reference to the data being referenced
 Integer_Text_IO.Put(Location); -- 9 Illegal. Location is not an Integer type
 Integer_Text_IO.Put(Location.all); -- 10 Legal. Location.all is data of Integer type
end Access_Type_1; -- 11

Line 3 declares a type that points [only] to objects of type Integer. It cannot point to any other type.
There is no pointer type in Ada that allows one to point to different types (except for classwide types).
Line 4 declares an object of the pointer type. It has no value. The default initial value is null. An Ada
pointer can never point to some undefined location in memory. Line 7 uses the reserved word new. In
this context, new is an allocator. An allocator reserves memory, at run time, for an object of some data
type. On Line 7, the address of that memory is assigned to the variable named Location. The pointer
named Location is not an Integer. Instead, it points to a storage location that contains an integer.

Storage pool access types will require some
kind of storage pool management since objects
are dynamically allocated to an area of
memory, possibly the “Heap.” Ada does not
require automatic garbage collection but some
compilers may provide it. Otherwise, use the
package System.Storage_Pools defined in
ALRM Chapter 13.

We don't really have true pointers in Ada. The use of
the word pointer is simply to acknowledge a
corresponding capability via access types. The
important thing is that the default for Ada access types
is safe, unlike pointers in the C family of languages; no
void pointers in Ada.

Ada Distilled by Richard Riehle

 Page 35 of 117

Ada, by default, prohibits arithmetic on a pointer. The following statement is not allowed in Ada.

Location := Location + 1; -- illegal. No pointer arithmetic allowed

Line 8 refers to Location.all. This how one refers to the data in the memory where Location points.
Notice that Line 9 will be rejected by the compiler, but Line 10 would compile OK.

5.3 General Access Type

A general access type provides additional capabilities to the storage pool access type. It permits storage
allocation like storage pool access types. It also allows access to declared objects when those objects are
labeled aliased. Returning the example above,

with Ada.Integer_Text_IO; use Ada; -- 1 Library package for Integer IO
procedure Access_Type_2 is -- 2
 type Integer_Pointer is access all Integer; -- 3 General access type; requires all
 N1 : aliased Integer := 42; -- 4 Aliased declared value
 N2 : Integer := 360; -- 5 Non-aliased declared value
 Location : Integer_Pointer; -- 6 General access type value
begin -- 7
 Location := N1'Access; -- 8 Point to value declared on Line 4
 Integer_Text_IO.Put(Location); -- 9 Illegal. Location is not an Integer type
 Integer_Text_IO.Put(Location.all); -- 10 Legal. Location.all is data of Integer type
 Location := N2'Access; -- 11 Illegal. N2 was not aliased
end Access_Type_2; -- 12

The first difference in this example is on Line 3. Integer_Pointer is a general access type because the
declaration includes the word, all. The next difference is Line 4. N1 is an aliased declared value. A
general access type may only reference aliased values. The reserved word, aliased, is required under most
circumstances. Tagged type parameters for subprograms are automatically aliased. Line 8 is a direct
assignment to an aliased value. This is legal. Contrast this with Line 11, which is not legal. Do you see
that Line 11 is not legal because N2, on line 5, is not aliased?

5.3.1 Preventing General Access Type Errors

There is a potential danger with direct assignment to pointers. This danger is present all the time in the C
family of languages. What happens when a data item goes out of scope and still has some other variable
pointing to it? Ada has compiler rules to prevent this. The following example illustrates this.

with Ada.Integer_Text_IO; use Ada; -- 1 Library package for Integer IO
procedure Access_Type_3 is -- 2
 type Integer_Pointer is access all Integer; -- 3 General access type; requires all
 Location : Integer_Pointer; -- 4 General access type value
begin -- 5
 declare -- 6 A declare block with local scope
 N1 : aliased Integer := 42; -- 7 Declare an aliased value locally
 begin -- 8
 Location := N1'Access; -- 9 Point to value declared on Line 4
 end; -- 10 End of declare block scope
end Access_Type_3; -- 11 Compilation failed! Sorry about that. ☺

The Ada compiler will reject this program. The rule is that the general access type declaration must be at
the same level (same scope) as its corresponding variables. If you look at this example carefully, you will

If one really needs to do pointer arithmetic, it is possible through a special packages from Chapter 13 of the ALRM, package
System.Address_To_Access_Conversions and package System.Storage_Elements. In practice, pointer arithmetic is unnecessary.

Ada Distilled by Richard Riehle

 Page 36 of 117

see that, when the declare block leaves its scope, Location would still be pointing to a value that has
disappeared. Instead of using ‘Access on line 9, the programmer could have coded ‘Unchecked_Access,
thereby bypassing the compile-time checks. Wisdom would dictate thinking very carefully before
resorting to the use of any “unchecked” feature of the language. The word “unchecked” means the
compiler does not check the validity or legality of your code. It is almost always an unsafe programming
practice.

While the accessibility rules (See 5.3.2) might seem a drawback, they are easily managed in practice.
Often it is enough to simply declare a local general access type and use it in a call to appropriate
subprograms. The following example shows how this could happen.

procedure Access_Type_4 is -- 1
 function Spritz (I : access Integer) return Integer is -- 2
 begin -- 3
 return I.all + 1; -- 4
 end Spritz; -- 5
begin -- 6
 declare -- 7
 type Integer_Pointer is access all Integer; -- 8
 Location : Integer_Pointer; -- 9
 N1 : aliased Integer := 42; -- 10
 N2 : Integer := 0; -- 11
 begin -- 12
 Location := N1'Access; -- 13 Assign location of N1 to Location
 N2 := Spritz(Location); -- 14 Call function with access variable parameter
 end; -- 15
end Access_Type_4; -- 16

On line 14, a local access variable is used to call a function that has an access parameter. The access
parameter is anonymous. We may not assign a location to it. However, it would be legal to code.

I.all := I.all + 1; -- N1 would also be incremented by 1
return I.all;

This code would change the actual value of what Location is pointing to. Avoid doing this sort of thing.
If you were to print the value for both N1 and N2, you would see the number 43. Some practitioners
consider this a side-effect. Side-effects are rare in Ada and usually considered bad programming style.

5.3.2 The Accessibility Rules

ALRM Section 3.10.2, paragraphs 3 through 22, describe the accessibility rules. The purpose of the rules
is to prevent dangling references. That is, when a variable is no longer in scope, there should be no
access value trying to reference it. This is checked by the compiler. Under some rare circumstances, it
might not be checked until run-time.

The rules can be summarized in terms of the lifetime of the access type itself. An object referenced by the
'Access attribute may not exist longer that the the access type to which it applies. Also, if an object is
referenced with the 'Access attribute, it must be able to exist as long as the access type.

The following three examples illustrate the point.

procedure Accessibility_Problem_1 is -- 1
 type Integer_Reference is access all Integer; -- 2 General access type in scope
 Reference : Integer_Reference; -- 3 Access value in immediate scope
 Data : aliased Integer; -- 4 Data at the same accessibility level

Not good coding style. Avoid these kinds of
side-effect statements. This is the one and only
place where C++ can be more reliable than Ada
because of the way C++ controls constants.

All uses of the general access type are localized
and the lifetime of each entity is appropriate to the
others. There will be no potential dangling
references when the declare block leaves its scope.

But this is a very naughty thing to do. Shame on
you if you do it!

This example will work just fine. No data will be
left dangling when the scope is exited. Lifetime
of all entities is the same.

Ada Distilled by Richard Riehle

 Page 37 of 117

begin -- 5
 Reference := Data'Access; -- 6 OK because types and declarations
end Accessibility_Problem_1; -- 7 are at the same accessibility level

procedure Accessibility_Problem_2 is -- 1
 type Integer_Reference is access all Integer; -- 2 General access type
 Reference : Integer_Reference; -- 3 Access value
begin -- 4
 declare -- 5
 Data : aliased Integer; -- 6 An aliased integer value
 begin -- 7
 Reference := Data'Access; -- 8 Will not compile; at wrong level of
 end; -- 9 accessibility for corresponding types.
end Accessibility_Problem_2; -- 10

procedure Accessibility_Problem_3 is -- 1
 type Integer_Reference is access all Integer; -- 2
begin -- 3
 declare -- 4
 Reference : Integer_Reference; -- 5
 Data : aliased Integer; -- 6
 begin -- 7
 Reference := Data'Access; -- 8
 end; -- 9
end Accessibility_Problem_3; -- 10

5.4 Access to Subprogram Types

One of the problems with the Ada 83/87 standard for Ada was the unavailability of some kind of pointer
capability for subprograms. The current Ada standard does permit this. The rules for formation of such
an access type are rather simple. The rules for visibility and accessibility of access to subprogram types
are often difficult to manage in one’s design.

5.4.1 Declaring an Access to Subprogram Type

• The type must have a parameter list corresponding to the subprogram being accessed
• The return type of a function access type must match that of the function being accessed
• Variables of the type may access any subprogram with a conforming profile

Examples:

 type Action is access procedure(Data : in out Integer);
 type Channel is access procedure(M : in out Message; L : out Natural);

 type Condition_Stub is access function (Expression : Boolean) return Boolean;
 type Compute is access function (L, R : Float) return Float;

5.4.2 Using an access to Subprogram Type

5.4.2.1 A Procedure Example

The following example demonstrates how to create an array of procedures. This is often useful when you
have multiple procedures with the same profile but different behaviors. In this example we have kept the
behavior simple to avoid confusion. The astute reader will immediately see the possibilities.

This will not compile. When
the program exits the declare
block, an outer pointer named
Reference would still be
pointing to data that no longer
existed. This is not simply a
dangling reference. It is a
reference to data that is no
longer valid. The Ada compiler
will not let you do this.

This will not compile. You
might think that putting the
actual pointer in the same local
scope as the data being reference
would work. The rule is that
access value named Reference
must exist at least as long as the

The signature (parameter profile)
of each subprogram access type
must exactly match any
subprogram being accessed.

Ada Distilled by Richard Riehle

 Page 38 of 117

with Ada.Integer_Text_IO; -- 1 ALRM Annex A
with Ada.Text_IO; -- 2 ALRM Annex A
use Ada; -- 3 Makes Ada directly visible
procedure Array_Of_Procedures is -- 4 Name of enclosing procedure
 type Action is access procedure (Data : in out Integer); -- 5 Access to subprogram definition
 procedure Process (D : in out Integer) is -- 6 Procedure with correct profile
 begin -- 7
 D := D + D; -- 8 Details; procedure behavior
 end Process; -- 9 end of scope of procedure
 type Process_Set is array(1..10) of Action; -- 10 Array type of access types
 Index : Positive; -- 11 Used for array index later
 Value : Integer := 0; -- 12 Used for actual parameter
 The_Process : Process_Set := (others => Process'Access); -- 13 access object array with aggregate
begin -- 14
 loop -- 15
 Text_IO.Put("Enter Index(1..10): "); -- 16
 Integer_Text_IO.Get(Index); -- 17
 exit when Index not in 1..10; -- 18 membership test for exit
 Text_IO.New_Line; -- 19
 Text_IO.Put("Enter Integer Value: "); -- 20
 Integer_Text_IO.Get(Value); -- 21
 The_Process(Index)(Data => Value); -- 22 Named association clarifies
 Text_IO.New_Line; -- 23
 Text_IO.Put("The result for Index " & Positive'Image(Index) -- 24
 & "is" & Integer'Image(Value)); -- 25
 end loop; -- 26
end Array_Of_Procedures; -- 27

5.4.2.2 A function Example

The following function example has behavior similar to the previous example. It has been altered a little
bit to illustrate some additional capabilities.

with Ada.Text_IO; use Ada; -- 1
 procedure Function_Access_Type is -- 2
 type Real is digits 12; -- 3 Define a floating point type
 package FIO is new Text_IO.Float_IO(Num => Real); -- 4 Instantiate IO package
 function Method (D : in Real) return Real is -- 5 function w/correct profile
 begin -- 6
 return D + D; -- 7
 end Method; -- 8
 type Compute is access function (D : in Real) return Real; -- 9 Corresponding access type
 Result, Value : Real := 0.0; -- 10
 procedure Process (Behavior : Compute; Input : in Real; -- 11 Note first parameter type
 Output : out Real) is -- 12
 begin -- 13
 Output := Behavior(Input); -- 14 Reference to a function
 end Process; -- 15
begin -- 16
 loop -- 17
 Text_IO.New_Line; -- 18
 Text_IO.Put("Enter Real Value (0 to exit): "); -- 19
 FIO.Get(Value); -- 20
 exit when Value = 0.0; -- 21
 Process(Behavior => Method'Access, Input => Value, Output => Result); -- 22 Key statement in example
 Text_IO.New_Line; -- 23
 Text_IO.Put_Line("The result is "); -- 24
 FIO.Put(Result, Fore => 4, Aft => 3, Exp => 0); -- 25

Ada Distilled by Richard Riehle

 Page 39 of 117

 Text_IO.New_Line; -- 26
 end loop; -- 27
end Function_Access_Type; -- 28

5.4.2.2 A Package Example

Many newcomers to Ada find the accessibility rules frustrating when trying to implement access to
subprogram solutions across packages. The accessibility rule remains the same, but one must design a bit
more carefully to ensure that access types are at the same level (have the same lifetime) as their access
objects and vice versa. The following package specification declares some access types.

package Reference_Types is -- 1
 type Int_32 is range -2**31..2**31 - 1; -- 2 a signed integer with range
 for Int_32'Size use 32; -- 3 use 32 bits for the integer
 type Data_Set is array (Natural range <>) of Int_32; -- 4 unconstrained array of int_32
 type Data_Set_Reference is access all Data_Set; -- 5 pointer type to the array type
 type Validate_Routine is access function(Data : Int_32) -- 6 access type that points to a
 return Boolean; -- 7 function; access to function
 type Process_Method is access Procedure(Data : Int_32); -- 8 access type points to
 procedure Process (Data : in out Data_Set; -- 9 procedure
 Method : in Process_Method); -- 10
 function Validate (Data : access Data_Set; -- 11 access parameter; in mode
 Validator : in Validate_Routine) return Boolean; -- 12 access to function parameter
 function Validate (Data : in Data_Set; -- 13 access parameter; in mode
 Validator : in Validate_Routine) return Boolean; -- 14 access to function parameter
end Reference_Types; -- 15

There are a few new ideas in this package. Line 2 has a signed integer type with a range that can be
represented in thirty-two bits. On line 3 we force the representation to thirty-two bits using the 'Size
clause. See the Annex K attributes for the definition of this clause. On lines 6 through 8 we declare
some access to subprogram types which for parameters in lines 9 through 15. The following package
contains declarations for functions for our final example. It depends on package Reference_Types.

with Reference_Types; -- 1
package Reference_Functions is -- 2
 function My_Process return Reference_Types.Process_Method; -- 3
 function My_Validator return Reference_Types.Validate_Routine; -- 4
end Reference_Functions; -- 5

Implementation for both packages will be presented a little later. Here is a little test procedure.

with Reference_Types; -- 1 Put reference types in scope
with Reference_Functions; -- 2 Reference functions in scope
with Ada.Text_IO; -- 3
procedure Test_Reference_Types is -- 4
 Test_Data : Reference_Types.Int_32 := 42; -- 5
 package Int_32_IO is new Ada.Text_IO. -- 6
 Integer_IO(Num => Reference_Types.Int_32); -- 7
 Test_Data_Set : Reference_Types.Data_Set(0..20) -- 8
 := (others => Test_Data); -- 9
begin -- 10
 Reference_Types.Process (Data => Test_Data_Set, -- 11
 Method => Reference_Functions.My_Process); -- 12
end Test_Reference_Types; -- 13

Line 6 simply demonstrates an instantiation of an I/O package for the Int_32 type. Line 11 calls the
procedure, Process from Reference_Types and gives it an actual parameter of My_Process from the

Note that this package is at the
same package level as the access
types in package Reference_Types

Note that Lines 11 and 12 make a
call to a procedure using a
"pointer" to a function as the
actual parameter.

Ada Distilled by Richard Riehle

 Page 40 of 117

package containing the Reference_Functions. So far, everything is at the same level of accessibility. Here
are the package bodies for Reference_Types and Reference_Functions.

package body Reference_Types is -- 1
 procedure Process (Data : in out Data_Set; -- 2
 Method : in Process_Method) is -- 3
 begin -- 4
 for I in Data'Range -- 5
 loop -- 6
 Method(Data(I)); -- 7
 end loop; -- 8
 end Process; -- 9
 function Validate (Data : access Data_Set; -- 10
 Validator : in Validate_Routine) return Boolean is -- 11
 begin -- 12
 return Validate(Data.all, Validator); -- 13
 end Validate; -- 14
 -- 15
 function Validate (Data : in Data_Set; -- 16
 Validator : in Validate_Routine) return Boolean is -- 17
 Without_Error : Boolean := True; -- 18
 begin -- 19
 for I in Data'Range -- 20
 loop -- 21
 Without_Error := Validator(Data => Data(I)); -- 22
 exit when not Without_Error; -- 23
 end loop; -- 24
 return Without_Error; -- 25
 end Validate; -- 26
end Reference_Types; -- 27

Here is a package body corresponding to the specification shown above. We remind the reader that,
unlike some languages (e.g., C++) where the separately compiled implementation code needs to be
explicity linked to the specification using a #include statement, an Ada package is a single unit in which all
parts are known to the underlying library mechanism. This means there will never be a body that it is out-
of-phase with its specification.

package body Reference_Functions is -- 1
 procedure My_Process (Data : Reference_Types.Int_32) is -- 2
 begin -- 3

Method is an access
value that
references a
procedure.

Validate is an
access value that
references a
function.

Ada Distilled by Richard Riehle

 Page 41 of 117

 null; -- 4
 end My_Process; -- 5
 function My_Validator (Data : Reference_Types.Int_32) return Boolean is -- 6
 begin -- 7
 return True; -- 8
 end My_Validator; -- 9
 function My_Process return Reference_Types.Process_Method is -- 10
 Test_Process : Reference_Types.Process_Method := My_Process'Access; -- 11
 begin -- 12
 return Test_Process; -- 13
 end My_Process; -- 14
 function My_Validator return Reference_Types.Validate_Routine is -- 15
 Test_Validation : Reference_Types.Validate_Routine -- 16
 := My_Validator'Access; -- 17
 begin -- 18
 return Test_Validation; -- 19
 end My_Validator; -- 20
end Reference_Functions; -- 21

Study these to determine where the 'Access attribute is applied. Note how this can actually work and still
prevent the dangling references. Accessibility rules are there to keep you from making stupid errors.

Ada Distilled for Ada 2005 by Richard Riehle

 Page 42 of 117

6. Subprograms

Subprograms are either functions or procedures. A subprogram may have parameters or not. Subprogram
parameters were introduced in an earlier section. The algorithmic code in your program will almost always
be contained within some kind of subprogram (or a task). A subprogram may have locally declared
variables, locally declared types, and locally nested subprograms or packages.

6.1 Procedures

6.1.1 Procedure Format and Syntax

A procedure in Ada may be used to implement algorithms. As shown earlier, procedure have a rich set of
parameter types and parameter modes. The format of a procedure body is,

procedure Ahoy_There is -- 1 Procedure declaration with no parameters; 6.3
 -- procedure declarations -- 2 Local to this procedure
begin -- 3 Begins sequence of algorithmic statements; 6.3
 -- handled sequence of statements -- 4 Handled by exception handler on error A.10.6
exception -- 5 An optional exception handler for the procedure
 -- a sequence of statements handling the exception -- 6 Any handling statements legal
end Ahoy_There ; -- 4 Scope terminator with name of unit 6.3

6.1.2 Procedure Compilation Units

Note the four parts to the procedure. This is sometimes called the "Ada comb." You may compile a
procedure specification as a source file separately from its implementation.

with Ada.Text_IO; -- 1 Put Text_IO library unit in scope; 10.1.2, A.10
procedure Simple_2; -- 2 Specification for a procedure may be compiled 6.3

The implementation may be coded and compiled later. The implementation for Simple_2 could be,

procedure Simple_2 is -- 1 Parameterless declaration; 6.3
begin -- 2 Begins sequence of algorithmic statements; 6.3
 Ada.Text_IO.Put_Line(“Hello Ada”); -- 3 Dot notation makes Put_Line visible A.10.6
end Simple_2 ; -- 4 Scope terminator with name of unit 6.3

Another version of this might execute the Put_Line some given number of times using a for loop. A for
loop includes an index value declared locally to the loop and a range of values for the index. The loop will
then iterate the number of times indicated by the index range. For example,

with Ada.Text_IO; -- 1 Put Text_IO library unit in scope; 10.1.2, A.10
procedure Simple_3 is -- 2 Parameterless declaration; 6.3
begin -- 3 Begins sequence of algorithmic statements; 6.3
 for Index in 1..10 loop -- 4 Specification of a for loop
 Ada.Text_IO.Put_Line(“Hello Ada”); -- 5 Dot notation makes Put_Line visible A.10.6
 end loop; -- 6 End of loop scope. End of loop index scope
end Simple_3 ; -- 7 Scope terminator with name of unit 6.3

A variation on the previous program uses some local declarations, a function with a parameter and a simple
call from the main part of the procedure.

with Ada.Text_IO; -- 1 Put Ada.Text_IO Library Unit in scope
procedure Simple_4 is -- 2 Declaration for parameterless procedure
 function Is_Valid (S : String) -- 3 Declaration for a function with a parameter
 return Boolean is -- 4 Specify the type of the return value
 ... -- 5 three dots not legal Ada

procedures and functions

with clause could
be moved to

Ada Distilled by Richard Riehle

 Page 43 of 117

 end Is_Valid; -- 6 End of scope for function Is_Valid
 Text : String (1..80); -- 7 Declare a String variable with constraint
 Len : Natural; -- 8 Uninitialized variable
begin -- 9 Begin handled-sequence-of-statments
 Ada.Text_IO.Get_Line(Text, Len); -- 10 Call to Get_Line procedure with two parameters
 if Is_Valid(Text(1..Len)) then -- 11 Call the function with string parameter
 Text_IO.Put_Line(Text(1..Len)); -- 12 Put string w/carriage return and line feed
 end if; -- 13 Ends scope of if statement
end Simple_4 ; -- 14 Ends scope of Simple_2

6.1.3 A Main Subprogram

A main subprogram is not required, but most programs have one. Here is an example of a main procedure.

with Application; -- This could be any Application package -- 1 Put package Application in scope; 10.1.2,
procedure Main is -- 2 Parameterless declaration; 6.3
 The_Application : Application.Application_Type; -- 3 Some kind of type for the application
begin -- Main -- 4 Begins Main subprogram; 6.3
 Restart_Iterator: -- 5 We want a non-stop system so we
 loop -- 6 create a restart iterator as a loop.
 Application_Control: -- 7 Label the Application control block
 begin -- Application_Control -- 8 No harm in commenting every begin
 Application.Start(Data => The_Application); -- 9 Start the application code
 Application.Stop(Data => The_Application); -- 10 Stop the application code
 exit Restart_Iterator; -- 11 If all goes well, exit the loop here.
 exception -- 12 If there is an exception anywhere, do this.
 when others => -- 13 Others captures any kind of exception
 Application.Cleanup(Data => The_Application); -- 14 Start the cleanup before Restarting
 Application.Restart (Data => The_Application); -- 15 Now restart the application
 end Application_Control; -- 16 Block label required because it is labeled
 end loop Restart_Iterator; -- 17 Loop label required because it is labeled
 Application.Finalization (Data => The_Application); -- 18 The finalization routines for application
end Main; -- 19 Scope terminator with unit name 6.3

6.1.4 Procedure Parameters

Any procedure or function may have parameters. The following example is a variation on the Diamond
procedure and demonstrates the use of named association in calling formal parameters. The syntax for
named association is (formal-parameter-name => actual-parameter-name). This example was originally designed
and programmed by a young US Marine Corps Lance Corporal who, at the time, had a high-school
education. Notice that he used elementary algebra to write this program with only one loop and simply
called the inner procedure by changing the algebraic signs of the actual parameters. While this code can be
improved , it demonstrates how this young Marine thought about the problem before coding it.

-- == -- 1
-- diamond.ada -- 2
-- Solution to Diamond Problem by LCPL Mathiowetz, USMC -- 3
-- Camp Kinser, Okinawa. June 1993. AdaWorks Intro to Ada Class -- 4
-- == -- 5 .
with ada.text_io; use Ada; -- Makes all of package Ada visible -- 6 Only Text_IO is required for this program
procedure Diamond is -- 7 Specification with no parameters
 package TIO renames Text_IO; -- 8 A shortened name for Text_IO
 subtype Column is TIO.Positive_Count; -- 9 Subtype may be used with its parent type
 Center : constant := 37; -- 10 A named constant
 Left_Temp, Right_Temp : Integer := Center; -- 11 Temporary values, initialized
 Plus_2 : constant := 2; -- 12 Positve constant value
 Minus_2 : constant := -2; -- 13 Negative constant value
 procedure Draw (Left, Right, Depth : in Integer) is -- 14 Nested procedure with parameter list
 Symbol : String(1..1) := "X"; -- 15 The character we will print
 Left_Col, Right_Col : Column; -- 16 These are probably extraneous
 begin -- 17 We are in a nested procedure

Technically, a main subprogram is either a procedure or function. Most often it is a procedure.
When it is a function, the return value is an integer to the operating system as in Unix or Linux.

These first five lines illustrate a
style for documenting an Ada source
code unit. The author of this solution
was a USMC Lance Corporal with a
High School education.

Ada Distilled by Richard Riehle

 Page 44 of 117

 for Index in 1..Depth loop -- 18 Index declared here; type is range type
 if Left_Temp = Center then -- 19 Is it time to Put the center character?
 TIO.Set_Col(Center); -- 20 Using renamed Text_IO.Count
 TIO.Put(Symbol); -- 21
 else -- 22
 Left_Col := Column(Left_Temp); -- 23 Extraneous assignment on these two lines;
 Right_Col := Column(Right_Temp); -- 24 we could do type conversion in Set_Col
 TIO.Set_Col(Left_Col); -- 25 TIO.Set_Col(Column(Right_Temp))
 TIO.Put(Symbol); -- 26 might be better coding on line 25 and 27
 TIO.Set_Col(Right_Col); -- 27
 TIO.Put(Symbol); -- 28 Symbol on line 15
 end if; -- 29
 TIO.New_Line; -- 30
 Left_Temp := Left_Temp + Left; -- 31 Arithmetic on Temporary values using
 Right_Temp := Right_Temp + Right; -- 32 algebraic addition on negative parameter
 end loop; -- 33
 end Draw; -- 34 End of nested procedure
begin -- Diamond -- 35 Always comment this kind of thing
 Draw (Left => Minus_2, Right => Plus_2, Depth => 9); -- 36 Use named association for these calls.
 Draw (Left => Plus_2, Right => Minus_2, Depth => 10); -- 37 Reverse the signs to get a different shape
end Diamond; -- 38 End of unit with named unit at end

Sometimes we want a variable to enter the procedure with one value and exit with a new value. Here is a
simple procedure which uses in out parameter mode. Although this example is trivially simple, it can be
extended to a large range of other data types where one must alter that state of an object in some carefully
controlled way.

procedure Update (Data : in out Integer) is -- 1 in out allowed on either side of :=
begin -- 2 start algorithmic part of procedure
 Data := Data + 1; -- 3 In with one value; out with a new value
end Update; -- 4 end of unit with unit name

Other times, it is useful to get a variable with an in value and return some other value within a procedure
parameter list. This is not always a good design model since it leads us to combine two ideas, modifier and
query, into a single operation. Many OOP practitioners suggest that modifiers and queries should be kept
separate. This example shows an update operation on an AVL Tree in which the procedure returns a
Boolean to indicate whether the tree is now in balance.

procedure Balance (The_Tree : in out AVL_Tree; Balanced : out Boolean) is -- 1 Dynamically, self-balancing tree
begin -- 2 built on access types for flexibility.
 -- long, complex, dynamically self-balancing algorithm -- 3 node rotations: LL, LR, RR, RL
 Balanced := -- a boolean result from the balancing algorithm -- 4 Must be checked by caller
end Balance; -- 5

The problem with the above example is that, any subprogram making the call, must also be sure to check
the Boolean result. If the Balanced parameter is not evaluated, the Boolean out parameter is of no value.

procedure Insert (Tree : in out AVL_Tree; Value : in Item) is -- 1 From collection of AVL_Tree methods
 OK_To_Proceed : Boolean := False; -- 2 Should be initialized
begin -- Insert -- 3 Good practice to comment a begin
 -- algorithm to insert a node in the tree -- 4 Pre-order, in-order, post-order?
 Balance(The_Tree => Tree, Balanced => OK_To_Proceed); -- 5 Named association call
 if OK_To_Proceed then -- 6 If you fail to do this check, you are
 -- some additional source code here -- 7 Making use of the out parameter of
 end if; -- 8 type Boolean.
end Insert; -- 9 If name is supplied, compiler checks.

Some Ada practitioners believe it is better to raise an exception in a function than to return a Boolean out
parameter in a procedure. Their rationale for this is that an exception cannot be ignored, but an out
parameter, is easy to overlook or ignore.

Ada Distilled by Richard Riehle

 Page 45 of 117

6.2 Functions

A function must return a result of the type indicated in its profile. The compiler will check this and
disallow a wrong return type. A function may be called in an assignment statement or as an argument
within another function or procedure call. Ada also allows pointers (access types) to functions and
procedures.

6.2.1 Function Format and Design

The Is_Valid function from a previous section might be coded to look like this,

function Is_Valid (S : String) -- 1 Default mode is in for type String
 return Boolean is -- 2 Boolean defined in package Standard
 Result : Boolean := True; -- 3 Return type named Result as local variable
begin -- 4 Begin the handled-sequence of statements
 for I in S'Range loop -- 5 I takes the index type of String: Positive
 case S(I) is -- 6 Examine a single character from the String
 when 'a'..'z' | 'A'..'Z' => -- 7 Check both upper and lower case
 null; -- 8 No break statement is required
 when others => -- 9 others required if not all options are covered
 Result := False; -- 10 Simple assignment of Boolean value
 exit; -- 11 exit leaves the loop. all indices are reset
 end case; -- 12 Every control structure requires terminator
 end loop; -- 13 Ends the scope of the loop including, I
 return Result; -- 14 Compiler requires a return statement
end Is_Valid; -- 15 Scope terminator for the function. Required.

6.2.2 Function Examples

The next program is an example of an Ada function. This function simply evaluates the greater of two
values in a parameter list and returns it. Every function must have at least one return statement.

function Largest (L, R : Integer) return Integer is -- 1 Parameterized function declaration; 6.3
begin -- 2 Begins sequence of algorithmic statements; 6.3
 if L > R then -- 3 Compare L to R
 return L; -- 4 function must return a value of return type 6.3
 else -- 5 If the comparison is false 5.3
 return R; -- 6 Another return; would a single return be better?
 end if; -- 7 Every if must have a corresponding end if. 5.3
end Largest; -- 8 Scope terminator with name of unit 6.3

To call this function you will use an assignment statement.

with Largest; -- 1 with is permitted for library unit function
procedure Hrothgar (Y, Z : in Integer; X : out Integer) is -- 2 Note the modes of the parameter list
begin -- 3
 X := Largest(L => Y, R => Z); -- 4 Named Association syntax 6.3
end Hrothgar; -- 5 As usual, include the name with the end statement

Line 4 shows named association syntax. In this case, L and R name the formal parameters. Y and Z name
the actual parameters. The arrow, in the form of =>, associates the actual paramter with the formal. This is
a powerful feature, unique to Ada, that makes source code more readable and more maintainable.

Suppose we have a record type called Stack. It contains two components. Every type ... is record
declaration must contain an end record statement. In the Stack record, shown below, there is also a
component of an array type. This is a constrained array of type Stack_Data.

type Stack_Data is array(1..1000) of Integer; -- 1 Constrained array type definition for Integers
type Stack is record -- 2 Record type format

Ada Distilled by Richard Riehle

 Page 46 of 117

 Data : Stack_Data; -- 3 Array component within a record
 Top : Natural := 0; -- 4 Natural data type; note the initialization
end record; -- 5 Every record structure requires an end record

Here is a function that returns a boolean value for a record type, Stack, that contains a component, Top

function Is_Empty (S : Stack) return Boolean is -- 1 Parameterized function declaration; 6.3
 Result : Boolean := False; -- 2 A locally declared result variable
begin -- 3 Begins sequence of algorithmic statements; 6.3
 if S.Top = 0 then -- Equality test -- 4 Syntax for an if statement; then is required
 Result := True; -- 5 Assignment statement based on true path
 else -- 6 An else takes the false path
 Result := False; -- 7 Another assignment
 end if; -- 8 An if requires an end if; checked by compiler
 return Result; -- 9 A function must contain at least one return
end Is_Empty; -- 10 Scope terminator with name of unit 6.3

Would it be better to have coded the Is_Empty function as,

function Is_Empty (S : Stack) return Boolean is -- 1 Parameterized function declaration; 6.3
begin -- 2 Begins sequence of algorithmic statements; 6.3
 return S.Top = 0; -- 3 Compare S.Top to Zero True or False
end Is_Empty; -- 4 Scope terminator with name of unit 6.3

Function parameters modes are only allowed to be in or access. The default mode is always in. An in
parameter is the equivalent of a constant to the function. One may never assign a value to an in mode
parameter value. Consider enumerated type, Month, and cycle through the months, returning to January
when you reach December. Consider,

type Month is (January, February, March, April, May, June, July, August, September, October, November, December);
function Next (Value : Month) return Month is -- 1 Declare a parameterized function
begin -- 2 No other declarations
 if Value = Month’Last then -- 3 Month'Last is December
 return Month’First; -- 4 Month'First is January
 else -- 5 The usual behavior of else
 return Month’Succ(Value); -- 6 Month'Succ(June) is July
 end if; -- 7 End Scope of if statement
end Next; -- 8 End scope of function

Consider another type, Vector, defined as an unconstrained array:

type Vector is array (Positive range <>) of Float; -- An unconstrained array; must be constrained when used

with an exception defined in a visible package specification as:

Range_Imbalance : exception; -- An exception declaration, visible somewhere in the design
 -- Note: an exception is not a data type

function “+” (L, R : Vector) return Vector is -- 1 Overloading an infix operator
 Result : Vector (L’Range) := (others => 0.0); -- 2 Constrain and initialize the result array
begin -- 3
 if L’Length /= R’Length then -- 4 Ensure R and L are of the same length
 raise Range_Imbalance; -- 5 Raise user-defined exception shown above.
 end if; -- 6 We never reach this point if exception is raised
 for Index in L’Range -- 7 The 'Range attribute generalizes the Index
 loop -- 8 Index only lives the scope of the loop
 Result (Index) := L(Index) + R(Index); -- 9 Index is a constant in the loop
 end loop; -- 10 The end of scope for the loop
 return Result; -- 11 No exception handler. The exception is propogated
end “+”; -- 12 to the calling subprogram. Looks for handler.

Ada Distilled by Richard Riehle

 Page 47 of 117

If the exception is not handled locally, the RTE will unwind through the calling stack searching for a
handler. If none is found, the program will crash and burn. You might want to have a function with an
access parameter. This has potential side effects. Consider the following record definition,

 type Data is record -- 1 Define a record type with a name
 Value : Integer := 0; -- 2 Initialize the values when possible
 Description : String(1..20); -- 3 Probably should be initialized
 end record; -- 4 Scope terminator for the record data
 type Ref is access all Data; -- 5 Define a pointer to the record

You could have a function,

function Is_Zero (The_Data : access Data) return Boolean is -- 1 Note access parameter
begin -- 2 Of course, by now you know this
 return The_Data.Value = 0; -- 3 Return result of equality test
end Is_Zero; -- 4 Scope terminator for the function

The Ada compiler will reject the following code,

function Fix_It_A (The_Data : access Data) return Ref is -- 1 Access parameter and access result
 Fix_It_Data : Ref := new Data'(some initial values); -- 2 Declare some initialized access object
begin -- 3 Of course, by now you know this
 The_Data := Fix_It_Data; -- illegal, illegal, illegal -- 4 No assignment allowed to parameter value
 return The_Data; -- 5 Will never get to this; will not compile
end Fix_It_A; -- 6 Scope terminator for the function

but the compiler will accept the following modification of a componenent of an access object,

function Fix_It_B (The_Data : access Data) return Ref is -- 1 Access parameter and access result
 Fix_It_Data : Integer := 25; -- 2 Declare initialized Integer object
begin -- 3
 The_Data.Value := Fix_It_Data; -- 4 Assignment allowed to component
 return The_Data; -- 5 Yes. Returns updated value for The_Data
end Fix_It_B; -- 6 Always include the name of the function

This is one of Ada's rare weaknesses vis a vis C++. In C++ we can declare a function as const or a
parameter as const. This may be fixed in a future ISO Ada so the access parameter can be constant.

One of the useful algorithmic capabilities of modern programming languages is recursion. For a recursive
solution, the subprogram must include a way to terminate before it runs out of memory. The following
academic example for a recursive function, is seldom a practical in real progamming applications.

function Factorial (N : Natural) -- 1
 return Positive is -- 2 Must have a return type
begin -- 3 Start of algorithmic part
 if N <= 1 then -- 4 Less than or equal to ...
 return 1; -- 5 Lowest positive value
 else -- 6 Alternative path
 return N * Factorial (N - 1); -- 7 The recursive call; function calls itself
 end if; -- 8 Terminate if statement
end Factorial; -- 9 Scope of the recursive function

Many sort routines, tree searching routines, and other algorithms use recursion. It is possible to do this in
Ada because every subprogram call is re-entrant. Each internal call of itself puts a result in a stack frame.
When the algorithm reaches a stopping point, based on the if statement, it unwinds itself from the stack
frame entries with a final result of the computation. The following program will work to test the Factorial
program,

Ada Distilled by Richard Riehle

 Page 48 of 117

with Factorial; -- 1 Yes, you may with a subprogram
with Ada.Integer_Text_IO; -- 2 I/O for Standard Integer
with Ada.Text_IO; -- 3 Character and String I/O
use Ada; -- 4 Make Ada visible; not a problem
procedure Test_Factorial is -- 5 Specification with "is"
 Data : Natural := 0; -- 6 In scope up to end of procedure
begin -- 7 You know what this means by now
 Text_IO.Put("Enter Positive Integer: "); -- 8 Display a prompt on the screen
 Integer_Text_IO.Get(Data); -- 9 Get an integer from the keyboard
 Integer_Text_IO.Put(Factorial(Data)); -- 10 Display an integer on the screen
end Test_Factorial; -- 11 End of declarative region for procedure

It is important to understand that recusion can result in a Storage_Error (see package Standard). Also,
intelligent use of Ada's visibility rules can often prevent accidental, infinite recursion.

A function can be compiled by itself in the library. Even more interesting is that a function specification
can be compiled into the library by itself. When the specification is compiled it must be completed later
with an implementation. This is identical to the procedure example, Simple_2, in 6.1.2 above.

6.3 Subprograms in A Package

An Ada package specification may group a set of subprogram declarations. No implementation code is
permitted in the specification. The implementation will be in the package body. This is more fully
covered in Chapter 7, below. Here is a simple package specification with a corresponding body. First the
specification:

package Kia_Ora is -- 1 Hello in Maori,early language of New Zealand
 procedure Kia_Menemene; -- 2 Be happy, in Maori
 function Menemene return Boolean; -- 3 Are you happy?
end Kia_Ora; -- 4 end of pacakge specification

Then a package body highlighting separate compilation:

package body Kia_Ora is -- 1 Now includes the word, body
 procedure Kia_Menemene is separate; -- 2 Defer actual implementation for the subprograms
 function Menemene return Boolean is separate; -- 3 to separate compilation units.
end Kia_Ora; -- 4

The separately compiled procedure could be coded:

separate (Kia_Ora) -- 1 Note absence of semicolon
procedure Kia_Menemene is -- 2 Makes maintenance much easier in small chunks
begin -- 3
 -- some implementation code here -- 4 Any standard Ada algorithmic code here
end Kia_Menemene;

Note that the separate option is useful for applications where security is important. For example, suppose
one has a piece of code that might be classified as Secret or Top Secret, but the rest of the code is
unclassified. The classified section of the code can be compiled separately and linked into the main body
of code without any need to reveal the details of that code. Also, separate is a much more powerful
approach to separate compilation than one finds in Java, C++, or most other languages. Finally, the
separate option allows one to control dependencies in a clean, clear way. A dependency can be pushed all
the way down to a separately compiled sub-unit thereby reducing the number of lines in a dependency
chart.

Note: Although this is the usual
example given in textbooks to
illustrate recursion, it is not always
the best way to accomplish
factorial computation.

Ada Distilled for Ada 2005 by Richard Riehle

 Page 49 of 117

7. Package Design

At the beginning of this book, we showed an example of an Ada package. Most Ada programs are
designed using packages. In fact, a single program is usually composed of many packages. A package is
a module for collecting related information and services. It can be thought of as a contract for services.
The user of that contract may be thought of as a client. In this sense, a client may us some of the services
but not want to use all of those services. Ada allows a client to indentify only those services needed,
through its visibility rules, even though all services might be in scope and potentially visible.

The services are in the form of type definitions, data declarations, and subprograms. A well-designed
package will rarely have data declarations as part of the contract. Instead, references to data should be
through a call to some subprogram.

7.1 A Simple Package

We revise the specification for the earlier Messenger package.

package Messenger is -- 1 An Ada package specification
 type Message is private; -- 2 A partial definition of message
 function Null_Message return Message; -- 3 Gives a null message
 function Create (S : String) return Message; -- 4 Make a message from a String
 function Get return Message; -- 5 Get message from keyboard
 procedure Put (M : in Message); -- 6 Put Message to Screen
 procedure Clear (M : in out Message); -- 7 Set message to null message
 function Text (M : Message) return String; -- 8 The string portion of message
 function Length (M : Message) return Natural; -- 9 How many of characters
private -- 10 Begin private part of package
 type Message is record -- 11 Full definition of message
 Data : String(1..200) := (others => ' '); -- 12 Message content; initialized
 Len : Natural := 0; -- 13 Message size; initialized
 end record; -- 14 End of message definition
end Messenger; -- 15 End of the specification

Notice there is no algorithmic code in a package specification. Ada lets you declare all the subprograms in
the specification. The implementation is in another compilation unit called the package body but the
specification and body are both part of the same library unit. The specification is a contract with a client.
It tells what it will do, not how it will be done. Ada is forbids algorithmic code in the specification part.

A client of package Messenger is only able to see lines 1 through 9 of the specification. The rest (lines 10
through 14) is only in the specification to satisfy the requirements of the Ada compiler. We call lines 1
through 9 the public part of the specification and lines 10 through 14, the private part. The private part of
an Ada package specification is somewhat analogous to a C++ class protected part. A child library unit
may have some visibility to private part just as C++ derived class has visibility to a protected part of its
parent class. We examine these visibility issues later.

The package Messenger exports some services as subprograms. The algorithmic (procedural) part of these
subprograms must be coded someplace. Ada forbids algorithms in the package specification. Algorithms
must be coded in the package body. Subprogram declarations in the specification require a corresponding
implementation in the body. The package body depends on successful compilation of its fully conforming
package specification. The Ada compiler checks this dependency through compilation unit date and time
stamps. The package body is an integral part of the library unit. The package body never needs to with
the package specification because both are part of the same library unit.

Public Part

Private

Ada Distilled by Richard Riehle

 Page 50 of 117

7.2 Package Body

Not every package needs a package body. In practice, only packages that declare public subprograms need
a body. Now and then a package may require a body even if it does not export a subprogram. This would
be the exception rather than the rule. This exception to the rule is also rigorously managed by the
compiler.

 Here is a package body for Messenger.

package body Messenger is -- 1
 function Create (S : String) return Message is -- 2
 begin -- 3
 -- algorithm to create object of type Message -- 4
 -- must have at least one return statement -- 5
 end Create; -- 6
 function Get return Message is -- 7
 begin -- 8
 -- algorithm to Get a message from some container or input device -- 9
 -- must have at least one return statement -- 10
 end Get ; -- 11
 procedure Put (M : in Message) is -- 12
 begin -- 13
 -- algorithm goes here -- 14
 end Put; -- 15
 procedure Clear (M : in out Message) is -- 16
 begin -- 17
 -- algorithm to clear the Message -- 18
 end Clear; -- 19
 function Text (M : Message) return String is -- 20
 begin -- 21
 -- algorithm, if necessary -- 22
 -- must have at least one return statement -- 23
 end Text; -- 24
 function Length (M : Message) return Natural is -- 25
 begin -- 26
 -- algorithm to get length of Message Text -- 27
 -- must have at least one return statement -- 28
 end Length; -- 29
end Messenger; -- 30

Neither a client or child of package Messenger ever has visibility to the package body. We say that the
implementation (always in a package body) is encapsulated.

7.3 More Simple Package Examples

7.3.1 Monetary Conversion Package

Here is another simple package specification. An implementation would convert currencies.

package Conversions is -- 1
 type Money is delta 0.0001 digits 12; -- 2 a decimal fixed-point type
 type Yen is new Money; -- 3 derive from Money
 type Dollars is new Money; -- 4 derive from Money
 function Convert (Y : Yen; Rate : Money) return Dollars; -- 5 declare a function specification
 function Convert (D : Dollars; Rate : Money) return Yen; -- 6 declare a function specification
 Conversion_Error : exception; -- 7 declare an exception
end Conversions; -- 8

package body Conversions is -- 1
 function Convert (Y : Yen; Rate : Money) return Dollars is -- 2
 Result : Dollars := 0.0; -- 3 declare result of return type

An acceptable variation on this body
would be to code each subprogram with
the reserved word separate. For
example,

procedure Put
 (M : in Message) is separate;

This would cause a stub for a subunit to
be created in the library for the completed
code corresponding to procedure Put.
This technique is useful when one wants
to divide the implementation of a package
over a team of several people, or preserve
the confidentiality of a particular piece of
source code.

Ada Distilled by Richard Riehle

 Page 51 of 117

 begin -- 4 stub out the function temporarily
 return Result; -- 5 after algorithm to do conversion
 end Convert; -- 6
 function Convert (D : Dollars; Rate : Money) return Yen is -- 7
 Result : Yen := 0.0; -- 8 declare result of return type
 begin -- 9 temporarily stub out the begin..end part
 return Result; -- 10 after algorithm to do conversion
 end Convert; -- 11
end Conversions; -- 12

The technique here is to stub out a function. Notice we must first declare a Result of the return type. Then
we can code the return statement in the begin..end part. A procedure can be stubbed out with the reserved
word, null. A function must have at least one return statement. This technique satisfies that requirement.

7.3.2 Simple Statistics Package

Here is another kind of package. This package provides a simple set of statistical services.

package Statistics is -- 1 Specification declaration
 type Data is array (Positive range <>) of Float; -- 2 An unconstrained array.
 function Mean (The_Data : Data) return Float; -- 3 Computes the statistical Mean
 function Mode (The_Data : Data) return Float; -- 4 Computes the statistical Mode
 function Max (The_Data : Data) return Float; -- 5 Computes Maximum Value of arrray
 function Min (The_Data : Data) return Float; -- 6 Computes Minimum Value of array
 function Variance (The_Data : Data) return Float; -- 7 Computes Statistical Variance
 function StdDev (The_Data : Data) return Float; -- 8 Computes Standard Deviation
end Statistics; -- 9 Package specification requires end

The following procedure is a client of the Statistics package.

with Statistics; -- 1 Put Statistics library unit in scope
with Ada.Float_Text_IO; -- 2 Library unit for floating point I/O
use Ada; -- 3 Makes Ada visible; discussed later
procedure Compute_Statistics is -- 4 A stand-alone procedure
 Stat_Data : Statistics.Data(1..100); -- 5 An array of float; note the constraint
begin -- 6 Starts the algorithmic part of procedure
 for Index in Stat_Data'Range -- 7 Specification of a for loop; more later
 loop -- 8 Every loop must have the word loop
 Float_Text_IO.Get(Stat_Data(Index)); -- 9 Fill the array with data
 end loop; -- 10 Every loop must have an end loop
 Float_Text_IO.Put(Statistics.Mean(Stat_Data)); -- 11 Call Statistics.Mean and output result
 Float_Text_IO.Put(Statistics.StdDev(Stat_Data)); -- 12 Call Statistics.StdDev and output result
end Compute_Statistics; -- 13 End of the procedure scope

The with statement on Line 1 puts the resources of the Statistics library package in scope. The Variance
function may be called by referencing Statistics.Variance. Line 2 puts the language-defined library unit,
Ada.Float_Text_IO in scope. Line 3 makes the parent of Float_Text_IO directly visible. Therefore, the
Get operation of Float_Text_IO on Line 9 is legal. Program declarations are between the is on Line 4 and
the begin on Line 6. On Line 5, the declaration is for data of the array type Statistics.Data. Since
Statistics.Data is declared with no actual range in the Statistics package, the programmer must specify
beginning and ending index values. Ada allows starting indexes other than zero. The defined index for an
array type may even include a range of negative values.

The expression, Stat_Data'Range in the loop specification, indicates that the loop will traverse the entire
array, beginning with the first value through the last value. The loop index, Index, will start with the first
value in the Range and proceed to the end. The Get operation on Line 9 is defined in the package
Ada.Float_Text_IO. Because we have a use clause for Ada on Line 3, we may reference it as shown.
The same is true for the Put operations on Lines 11 and 12. We call the Mean and StdDev functions from
Statistics. These functions take a parameter of type Data and return a floating point value.

Ada Distilled by Richard Riehle

 Page 52 of 117

7.4 Simple Mathematics Packages

Ada has a rich set of capabilities for numeric algorithms. One of the key packages is Ada.Numerics. This
package has some child packages. The most important are Ada.Numerics.Generic_Elementary_Functions,
Ada.Numerics.Float_Random, and Ada.Numerics.Discrete_Random. It also defines, in Annex G, a model
for strict and relaxed mode for floating point values. (Also see the discussion on attributes in this book.)

7.4.1 Example without Numerics Library

This example will compile and execute. However, it is better to use the language-defined libraries.

with Ada.Text_IO; -- 1 Put Text_IO library unit in scope; 10.1.2, A.10
with Ada.Float_Text_IO; -- 2 Predefined in Annex A A.10.9/33
procedure Pi_Symbol is -- 3 Parameterless declaration; 6.3
 Pi : constant Float := 3.1415; -- 4 Should have used Ada.Numerics for this
 Radius : Float := 12.0; -- 5 Ordinary Floating point initialized
 Area : Float := 0.0; -- 6 I somtimes initialize all variables; not required here
begin -- 7 Begins sequence of algorithmic statements; 6.3
 Area := Pi * Radius ** 2; -- 8 Pi is also pre-defined in Ada.Numerics
 Ada.Float_Text_IO.Put(Area); -- 9 Dot notation makes Put visible A.10.6
end Pi_Symbol; -- 10 Scope terminator with name of unit 6.3

7.4.2 Using Numerics Library

A better approach to declaring Pi and and using Ada for number crunching is to use the language-defined
numerics libraries. The following program illustrates some ideas from this set of libraries.

with Ada.Text_IO; -- 1 Put Text_IO library unit in scope; 10.1.2, A.10
with Ada.Float_Text_IO; -- 2 A.10.9/33
with Ada.Numerics.Generic_Elementary_Functions; -- 3 A.5.1
use Ada; -- 4 Gives direct visibility to all of package Ada 8.4
procedure Compute_Trigs is -- 5 Parameterless declaration; 6.3
 package Compute is new Ada. -- 6 A.2 A new instance with a new name
 Numerics. -- 7 A.5 Root package for numerics
 Generic_Elementary_Functions -- 8 A.5.1 Contains Trig and other functions
 (Float_Type => Float); -- 9 A.1/25 for definition of type Float
 Pi : Float := Ada.Numerics.Pi; -- 10 Pi is defined in Ada.Numerics
 Radius : Float := 12.0; -- 11 Ordinary Floating point initialized
 Area : Float := 0.0; -- 12 Not everyone agrees that initialization is a good idea!
 SQRT_Result : Float := 0.0; -- 13 For our Square root computation
begin -- 14 Begins sequence of algorithmic statements; 6.3
 Area := Pi* Radius ** 2; -- 15 Compute the area of the circle
 Ada.Float_Text_IO.Put(Area); -- 16 dot notation makes Put visible A.10.6
 Sqrt_Result := Compute.Sqrt(Area); -- 17 Note use of Compute with dot notation
end Compute_Trigs; -- 18 Scope terminator with name of unit 6.3

7.4.3 Precompile Numerics Library

Note: Not everyone agrees with line 12, above. Some developers prefer not to initialize variables because they might contribute to unexpected errors during maintenance.

Ada Distilled by Richard Riehle

 Page 53 of 117

Sometimes it is useful to precompile a generic library package for a frequently used data type. The math
library is one such package, especially if you are using the same floating point type repeatedly.

Suppose you have declared the following example somewhere in your design,

package Defined_Types is
 type Real is digits 7 range -2.0 ** 32 .. 2.0 ** 32;
end Defined_Types;

Ada allows you to precompile the generic elementary functions package for this type so it could be brought
into scope through a simple "with" clause. For example,

with Ada.Numerics.Generic_Elementary_Functions;
with Defined_Types;
package Real_Functions is new Ada.Numerics.
 Generic_Elementary_Functions(Defined_Types.Real);

Now, you can access this package easily by "with Real_Functions" in a context clause.

7.4.4 Mathematical Expressions

The following examples demonstrate the use of the generic mathematics package with calls to some of the
functions in that package. Note that the default type for trigonometric functions is in Radians.

with Defined_Types; -- 1
with Real_Functions; -- 2
with Generic_Utilities; -- 3
procedure Test_Math_Functions is -- 4
 subtype Degree is Defined_Types.Real range 1.0..360.0; -- 5
 subtype Radian is Defined_Types.Real range 0.0..2.0 * 3.14; -- 6
 function To_Degrees is new Generic_Utilities.To_Degrees(Degree => Degree, Radian => Radian); -- 7
 function To_Radians is new Generic_Utilities.To_Radians(Degree => Degree, Radian => Radian); -- 8
 R1, R2, R3, R4 : Radian := 0.0; -- 9
 D1 : Degree := 90.0; -- 10
 D2 : Degree := 360.0; -- 11
begin -- 12

R1 := To_Radians(D1); -- 13
R2 := Real_Functions.Sin(X => R1); -- 14
R2 := Real_Functions.Sin(X => R1, Cycle => D2); -- 15
R2 := Real_Functions.ArcSinh(X => R1); -- 16
R3 := Real_Functions.ArcCot(X => R1, Cycle => 40.0); -- 17
R4 := Real_Functions.Cos(X => R1, Cycle => D2); -- 18
R1 := To_Radians(D2); -- 19
R3 := Real_Functions.Tan(X => R1); -- 20
D2 := To_Degrees(R2); -- 21

end Test_Math_Functions; -- 22

The package Generic_Utilities is not described in this book. It is one the program files in the ZIP file of
programs available with this book. For functions with no cycle parameter, assume a natural cycle of 2 Pi,
which means all calculations are done in radians. Lines 17 shows that you can provide other parameter
values for the cycle parameter.

This fragment of code can actually be compiled as a new library unit that can be
referenced in a context clause through a with clause

Ada Distilled by Richard Riehle

 Page 54 of 117

7.5 Ada 2005 - An Encryption Package

Ada now provides some interesting capabilities for package designs. The following is a sample Encryption
package. Note that this package is not intended to defeat experienced cryptologists. Rather, it is intended
as an example of some of the features in the new Ada standard.

package Encryption is -- 1 package specification name
 type Encrypted is limited private; -- 2 Ordinary limited private type
 type Encrypted_Reference is access all Encrypted; -- 3 General access type
 type String_Reference is access all String; -- 4 General access type
 type Encryption_Level is (High, Medium, Low); -- 5 Enumerated type

 procedure Encrypt (Unencrypted_Data : in String; -- 6 Create an encrypted object
 Encrypted_Data : in out Encrypted; -- 7 in out; in with one value out with another
 Level : Encryption_Level); -- 8 Able to select different algorithm

 procedure Decrypt (Encrypted_Data : in Encrypted; -- 9 Reverse of Encrypt
 Unencrypted_Data : out String); -- 10 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 function Encrypt (Unencrypted_Data : in String; -- 11 This will compile but it can never be
 Level : Encryption_Level) return Encrypted; -- 12 called because returntype is limited

 function Decrypt (Encrypted_Data : in Encrypted) return String; -- 13 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 function Encrypt (Unencrypted_Data : in String; -- 14 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 Level : Encryption_Level) return access Encrypted; -- 15 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 function Decrypt (Encrypted_Data : access Encrypted) return String; -- 16 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 function Decrypt (Encrypted_Data : access Encrypted) return access String; -- 17 New in Ada 2005

 function Encrypt (Encryption_Algorithm : access function -- 18 Anoymous access to function.
 (The_Data : String) return access String; -- 19 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 String_Data : String; -- 20 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 Level : Encryption_Level) return Encrypted; -- 21 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
private -- 22 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 type Encrypted is record -- 23 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 Data : access String; -- 24 Anonymous access to an array
 String_Length : Natural := 0; -- 25 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 Level : Encryption_Level := Low; -- 26 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 end record; -- 27 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

end Encryption; -- 28 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Ada Distilled by Richard Riehle

 Page 55 of 117

8. Child Library Units

An Ada package may have a child. The child may be another package or a subprogram. A subprogram
may not have a child. Most of the time, design child library units as packages so they can be extended. A
child package specification is just like any other package specification.

.

8.1 Kinds of Child Library Units

Child library units may be packages, functions, or procedures. A function or procedure may not have
additional children. Ada supports both public and private child library units. A child unit is public, by
default. The identifier of a public child may appear in any context clause anywhere in a system. A
private child may only appear in a context clause for a body (e.g., package body) when that body is for a
specification with the same root (parent, grandparent, etc.). It is also possible to have generic child library
units. However, children of generic units must also be generic.

8.2 Visibility Rules

Visibility Rules are a little tricky
but easy once you grok them.

8.3 Root Packages

Sometimes we want to design a root package that is the home node for a hierarchy or subsystem of other
library units. A root package can vary greatly in its form. Sometimes a root package contains nothing bu
a few exception declarations. Other times it is more complex, possibly with specialized type declarations.
the general rule is to keep the root package as simple as possible Here is one possible root package

Public part of child has
direct visibility to
public part of parent

private part of child has
direct visibility to private
and public part of parent

client has no direct visibility
to any unit referred to in a
context clause

package P.Q is
 type T2 is new T1 with private;
 procedure Make(X : in out T2);
 function OK (X : in T2) return Boolean;
private
 type T2 is new T1 with record
end P.Q;

P

P.Q

package body P is
 procedure Make(X : in out T1) is ... end Make;
 function OK (X : in T1) return Boolean is ... end OK;
end P;

package body P.Q is
 procedure Make(X : in out T2) is ... end Make;
 function OK (X : in T2) return Boolean is ... end OK;
end P.Q;

with P.Q;
procedure P_Q_Client is
 ...
begin
 ...
end P_Q_Client;

private part of child has direct visibility to private and public part of parent

package P is
 type T1 is tagged private;
 procedure Make(X : in out T1);
 function OK (X : in T1) return Boolean;
private
 type T1 is tagged record .. end record;
end P;

There is direct upward visibility from a child to its parent. The
private part and body of a child can see the private and public
part of a parent or grandparent. No unit ever has direct
visibility to a package body. A client never has direct visibility
to any other unit. The client must use one of the visibility
mechanisms to get direct visibility. The direct visibility of child
units continues all through the parent child hierarchy.
Grandchildren bodies can see grandparent private parts.

a) Public part of child has direct visibility to public part of parent
b) Private part of child has direct visibility to private and public part of parent.
c) Body of child has direct visibility to private and public part of parent.
d) Grandchild units have direct visibility that corresponds to child units.
e) Private unit can only be with'ed by body of unit if both have same root package.

Ada Distilled by Richard Riehle

 Page 56 of 117

 package Root is -- 1 Declare a root package specification
 Bad_Bad_Bad : exception; -- 2 An exception declaration which will be
 No_No_No : exception; -- 3 visible throughout the entire hierarchy.
 type Number is private; -- 4 A partial definition for a type
 function "+" (N : Number) return Number; -- 5 Overloading equivalent to i++
 function "-" (N : Number) return Number; -- 6 Overloading equivalent to i--
 function Set (To : Integer) return Number; -- 7 Set number to a value
 function Integer_Is(N : Number) return Integer; -- 8 Convert number to an Integer
 private -- 9 Begin the private part of package
 type Number is range -2**31..2**31-1; -- 10 Full definition of the private type
 end Root; -- 11 End of scope for package specification

This package illustrates a possible design for a root package. This is simply a model, not a suggested
design approach. Here is a simple child package of the preceding Root package.

package Root.Application is
 type Application_Type is private; -- partial definition of type
 procedure Create (A : in out Application_Type);
 function Is_Empty(A : Application_Type) return Boolean;
 -- more operations(modifier and query methods)
private
 type Application_Type is ... ; -- full definition of private type
end Root.Application;

8.4 Classwide Child Package

Earlier in this book we had a root package that resembled the following,

package Abstract_Machinery is -- Package specification; requires body
 type Machine is abstract tagged private; -- Specifies the visible part of the data type;
 type Reference is access all Machine'Class; -- Tagged type should have classwide access
 function Create (Desc : String) -- Parameter for Create
 return Machine'Class; -- Tagged return type should be classwide
 procedure Turn_On (M : in out Machine); -- procedure specification; modifier method
 procedure Turn_Off (M : in out Machine); -- procedure specification; modifier method
 function Is_On (M : in Machine) return Boolean; -- function specification; query method
private -- private part hidden from a client of contract
 type Machine is abstract tagged record -- full definition of the publicly declared type
 Turned_On : Boolean := False; -- component of the type; OOP attribute
 Description : String(1..120); -- Constrained array component
 end record; -- scope terminator for the component
end Abstract_Machinery; -- scope terminator for the specification

This could be a base (root) package for machines that can be turned on and off. The data type, Machine,
is declared abstract. That means no instances of it are allowed. One could create some child packages for
this, combining child library units and inheritance.

package Abstract_Machinery.Classwide is -- 1 Package specification; requires body
 type FIFO_Container(Size : Positive) -- 2 Parameterized type; make it any size
 is limited private; -- 3 No assignment ever allowed for limited view of a type
 procedure Put(CM : in out FIFO_Container; -- 4 Put into the next available Container location
 Data : access Machine'Class); -- 5 Any member of class, Machine
 procedure Get(CM : in out FIFO_Container) -- 6 Get, destructively, first item, from the Container
 Data : access Machine'Class); -- 7 Any member in derivation tree for Machine'class
private -- 8 Start hidden part of the package; never visible to a client
 type Machine_Data is array -- 9 Define an unconstrained array
 (Positive range <>) of Reference; -- 10 The array is pointers to Machine'Class
 type FIFO_Container(Size : Positive) is -- 11 Full definition of parameterized type; parameter call a discriminant
 record -- 12 in the format of a record
 Current : Natural; -- 13 What is the current item; this is an index into the array
 Data : Machine_Data(1..Size); -- 14 Pointer array to Machine derivations
 end record; -- 15 Terminate scope of the record
end Abstract_Machinery.Classwide; -- 16 scope terminator for the child library unit specification

Dot notation to signifies that Application is a
child unit of package Root. Public part of
Application has direct visibility to public part
of package Root. Private part of Application
has direct visibility to private and public part
of package Root.

Visible
part of

contract.

Not

visible
to client

of
contract.

Ada Distilled by Richard Riehle

 Page 57 of 117

The preceding classwide child package lets you put any object of type Machine'Class into a container.
This is quite a handy thing to be able to do. This is a heterogeneous container for different kinds of
machines.

8.5 Private Child Library Unit

Sometimes we want to promote the internals of a package to the level of a separate package. The
following example is a simplified contrivance that is intended to show how one might refactor a design into
better abstractions. We use the language feature called, private child units to accomplish this.

Consider a package that has a simple specification where the public methods are implemented in package
body. The example package, shown below, does some simple message handling, but also stores and
retrieves each message from a fixed size array. A real application would be more designed to more robust
standards, but we keep this simple to illustrate our central point.

8.5.3.1 Root Package for Application

package Application is -- 1 Declare a root package for application
 type Assertion is access function return Boolean; -- 2 A pointer (access type) to a function
 Precondition_Error : exception; -- 3
 Postcondition_Error : exception; -- 4
 Invariant_Error : exception; -- 5
end Application; -- 6

This style of package should be self-evident by now. It is nothing more than an access type to a
parameterless function and few exceptions that can be raised throughout the parent-child hierarchy.

8.5.3.2 Child of Application Root

This is a child package of the root package in 8.1.2.1. It has direct visibility to all of the public features of
the parent package. The pre- and post-conditions are access parameters in the procedures. This is possible
because the functions are at the same accessibility level as the access type in package Application.

package Application.Messenger is -- 1 A child of package Application
 type Message is tagged private; -- 2 A simple tagged type; public view
 type Reference is access all Message'Class; -- 3 Always include a classwide access
 function Require_Not_Empty return Boolean; -- 4 Pre-condition
 function Ensure_Length_Adjusted return Boolean; -- 5 Post-condition
 function Require_Not_Full return Boolean; -- 6 Pre-condition
 procedure Make(M : in out Message; S : String); -- 7
 procedure Get -- 7.1
 (M : out Message; -- 8
 Precondition : Assertion := Require_Not_Empty'Access; -- 9 Access to a subprogram
 Postcondition : Assertion := Ensure_Length_Adjusted'Access); -- 10 Access to subprogram
 procedure Put -- 10.1
 (M : in Message; -- 11
 Precondition : Assertion := Require_Not_Full'Access; -- 12 Access to subprogram
 Postcondition : Assertion := Ensure_Length_Adjusted'Access); -- 13 Access to subprogram
 function Len (M : in Message) return Natural; -- 14
private -- 15
 type Message is tagged record -- 16 Full definition of tagged type
 Text : String(1..120); -- 17
 Length : Natural := 0; -- 18
 end record; -- 19
end Application.Messenger; -- 20

Three exceptions, each of which will be
directly visible throughout the entire
hierarchy of child library units.

Ada Distilled by Richard Riehle

 Page 58 of 117

8.5.3.3 A Private Child Package

A private child library unit may only be referenced by a context clause in the body of a unit rooted at the
same level as the direct parent unit. In this case, Messenger is the parent of this private package.

private package Application.Messenger.Storage is -- Note the word private and dot notation -- 1
 type Message_Container is private; -- 2
 procedure Insert_At_End (Into : in out Message_Container; M : in Message'Class); -- 3
 procedure Get_First_Message (From : in out Message_Container; M : out Message'Class); -- 4
 private -- 5
 type Container is array(1..500) of Reference; -- 6
 type Message_Container is -- 7
 record -- 8
 Data : Container; -- An array of 500 Message'Class access values -- 9
 Count : Natural := 0; -- 10
 end record; -- 11
end Application.Messenger.Storage; -- 12

8.5.3.4 The Body of Application.Messenger

This example, by itself, is not to be taken too seriously. You will enjoy designing your own version when
you study this feature in more depth. It does compile and execute. However, we have not defined all the
algorithms and functionality that you might want for a robust application.

with Application.Messenger.Storage; -- Context clause only permitted in body of sibling package -- 1
package body Application.Messenger is -- 2
 The_Storage_Container : Application.Messenger.Storage. -- 3
 Message_Container; -- 4
 procedure Get (M : out Message; -- 5
 Precondition : Assertion := Require_Not_Empty'Access; -- 6
 Postcondition : Assertion := Ensure_Length_Adjusted'Access) is -- 7
 begin -- 8
 if Require_Not_Empty then -- 9
 Application.Messenger.Storage.Get_First_Message -- 10
 (From => The_Storage_Container, M => M); -- Note use of named association -- 11
 end if; -- 12
 if Ensure_Length_Adjusted then -- 13
 null; -- This would usually contain actual code but we stubbed it out. -- 14
 end if; -- 15
 end Get; -- 16
 function Len (M : in Message) return Natural is -- 17
 begin -- 18
 return M.Length; -- 19
 end Len; -- 20
 procedure Make (M : in out Message; S : String) is -- 21
 begin -- 22
 if S'Length > M.Text'Length then -- 23
 raise PreCondition_Error; -- 24
 else -- 25
 M.Text(1..S'Length) := S(S'Range); -- 26
 end if; -- 27
 M.Length := S'Length; -- 28
 end Make; -- 29
 procedure Put (M : in Message; -- 30
 Precondition : Assertion := Require_Not_Full'Access; -- 31
 Postcondition : Assertion := Ensure_Length_Adjusted'Access) is -- 32
 begin -- 33
 Application.Messenger.Storage.Insert_At_End(Into => The_Storage_Container, M => M); -- 34

Important Ada Design Feature

This private package
specification is a
child of Messenger
which is a child of
Application.

Note

Ada Distilled by Richard Riehle

 Page 59 of 117

 end Put; -- 35
 function Require_Not_Empty return Boolean is -- 36
 Result : Boolean := False; -- 37
 begin -- 38
 return Result; -- 39
 end Require_Not_Empty; -- 40
 function Ensure_Length_Adjusted return Boolean is -- 41
 Result : Boolean := False; -- 42
 begin -- 43
 return Result; -- 44
 end Ensure_Length_Adjusted; -- 45
 function Require_Not_Full return Boolean is -- 46
 Result : Boolean := False; -- 47
 begin -- 48
 return Result; -- 49
 end Require_Not_Full; -- 50
end Application.Messenger; -- 51

8.5.3.5 Body for The Private Child Unit

This example is all done except for the body of the private child unit. Notice that we have stubbed out
some of the implementation. This also compiles and executes. You will want to expand on the
functionality. You might even want to change the implementation of the container to something more
generic.

with Ada.Unchecked_Deallocation; -- 1
package body Application.Messenger.Storage is -- 2
 procedure Free is new Ada.Unchecked_Deallocation -- 3
 (Object => Message'Class, -- 4
 Name => Reference); -- 5
 procedure Get_First_Message (From : in out Message_Container; M : out Message'Class) is -- 6
 Work_Container : Container := From.Data; -- 7
 begin -- 8
 M := From.Data(1).all; -- 9
 Free(From.Data(1)); -- 10
 From.Data(1..From.Count) := From.Data(2..From.Data'Last); -- 11
 end Get_First_Message; -- 12
 procedure Insert_At_End (Into : in out Message_Container; M : in Message'Class) is -- 13
 begin -- 14
 if Into.Count < Container'Length then -- 15
 Into.Count := Into.Count + 1; -- 16
 Into.Data(Into.Count) := new Message'(M); -- 17
 else -- 18
 raise PreCondition_Error; -- 19
 end if; -- 20
 end Insert_At_End; -- 21
end Application.Messenger.Storage; -- 22

8.6 Summary

Child library units are one of the most powerful features of the current Ada standard. When you have
practised with them long enough, you will find many ways to use them to factor your designs into smaller,
more compact, and more maintainable compilation units.

Ada Distilled for Ada 2005 by Richard Riehle

 Page 60 of 117

9. Object-Oriented Programming With Packages

Ada 95 included support for extensible inheritance, polymorphism, and dynamic binding. These are three
key features of object-oriented programming (OOP). Ada enables this through the extensible tagged type.
Ada 2005 adds a capability for distinguished receiver notation as well as some relaxation for the rules on
access types and limited private types. There is also an explicit reserved word to designate when a method
is overriding These new rules will make it even easier to create robust designs with Ada 2005.

9.1 An Object-Oriented Type

Consider this package containing a tagged type. Every instance of a tagged type contains an internal tag.
A tagged type may be extended with additional components.

package Machinery is -- 1 An Ada Module
 type Machine is tagged private; -- 2 A tagged partial definition of message
 type Reference is access all Machine’Class; -- 3 A classwide access type
 procedure Turn_On (M : in out Machine); -- 5 Turn on the machine
 procedure Turn_Off (M : in out Machine); -- 6 Turn off the Machine
 function Is_On (M : Machine) return Boolean; -- 7 Is the Machine turned on?
private -- 8 Begin private part of package
 type Machine is tagged record -- 9 Full tagged definition of message
 Is_On : Boolean := False; -- 10 Machine content; initialized
 end record; -- 11 End of machine definition
end Machinery; -- 12 End of the package specification

9.2 A Possible Client of the Type

A client of package Messenger might be set up as,

with Messenger; -- 1 A context clause
procedure Messenger_Processor ... end Messenger_Processor; -- 2 Three dots are not legal Ada

The context clause, with Messenger, makes package Messenger and all its public services available, but
not directly visible, to Messenger_Processor. Public services can be made visible through a use clause, a
use type clause, renaming of the operations, or simple dot notation.

9.3 Inheritance and Extension

The Machinery package specification, with its tagged type, Machine, illustrates some important ideas in
Ada. A tagged type may be extended. Therefore, one could have a client package, Rotating_Machinery,

with Machinery; -- 1
package Rotating_Machinery is -- 2
 type Rotational is new Machinery.Machine with private; -- 3 Inherits Machine methods & data
 overriding procedure Turn_On (R : in out Rotational); -- 4 Overrides Machinery.Turn_On
 overriding procedure Turn_Off (R : in out Rotational); -- 5 Overrides Machinery.Turn_Off
 procedure Set_Speed (R : in out Rotational; S : in Positive); -- 6 New primitive operation
private -- 7
 type Rotational is new Machinery.Machine -- 8
 with record -- 9
 RPM : Natural := 0; -- 10 New component in derivation
 end record; -- 11
end Rotating_Machinery; -- 12

The Rotating_Machinery package declares a data type that extends the content of the parent type. The
type, Rotational now contains two components. It has the one originally included in Machine plus the one
we added in the type derivation statement. Note the explicit use of overriding to prevent confusion.

An Ada package is not a first-class object. You cannot
create instances of a package, unless it is a generic package.

Ada Distilled by Richard Riehle

 Page 61 of 117

9.4 Dynamic Polymorphism

9.4.1 Dispatching with Primitive Operations

The operations Turn_On, Turn_Off, Is_On, and Set_Speed are called primitive operations. They can be
called dynamically, depending on the tag of the object. The following procedure demonstrates one way to
do this. Note: the actual procedure to be called cannot be determined until run-time in this example.

with Machinery, Rotating_Machinery; -- 1 Context clause
with Ada.Integer_Text_IO; -- 2 Enables the input of the array index
procedure Dynamic_Binding_Example_1 is -- 3 Specification for the example procedure
Data : array (1..2) of Machinery.Reference := -- 4 Anonymous array of access objects
 (1 => new Machinery.Machine, -- 5 Dynamically allocate new Object
 2 => new Rotating_Machinery.Rotational); -- 6 Dynamically allocate new Object
 Index : Natural range 1..2 := 0; -- 7 Use this to index into the array
begin -- 8
 Ada.Integer_Text_IO.Get(Index); -- 9 Get the index for the next statement
 Machinery.Turn_On(Data(Index).all); -- 10 Dynamically call one of the Turn_On methods
end Dynamic_Binding_Example_1; -- 11

The next example does essentially what the previous example did. However, this example illustrates how
to code a classwide procedure. Once again, the version of Turn_On to choose is known only at run-time.

with Machinery, Rotating_Machinery; -- 1 With both packages; no use clause required
with Ada.Integer_Text_IO; -- 2 Enables the input of the array index
procedure Dynamic_Binding_Example_2 is -- 3 Specification for the example procedure
 Data : array (1..2) of Machinery.Reference := -- 4 Anonymous array of access objects
 (1 => new Machinery.Machine, -- 5 Dynamically allocate new Object
 2 => new Rotating_Machinery.Rotational); -- 6 Dynamically allocate new Object
 Index : Natural range 0..2 := 0; -- 7 Use this to index into the array
 procedure Start(M : Machine’Class) is -- 8 Procedure with classwide parameter
 begin -- 9
 Machinery.Turn_On(M); -- 10 Turn_On is dynamically determined via the tag
 end Start; -- 11
begin -- 12
 Ada.Integer_Text_IO.Get(Index); -- 13 Get the index for the next statement
 Start(M => Data(Index).all)); -- 14 Call the classwide procedure
end Dynamic_Binding_Example_2; -- 15

Here is still one more example that illustrates the usefulness of a function that returns a classwide value..

with Machinery, Rotating_Machinery; -- 1 No use clause is required for this example
with Ada.Integer_Text_IO; -- 2 Enables the input of the array index
procedure Dynamic_Binding_Example_3 is -- 3 Specification for the example procedure
 Index : Natural range 0..2 := 0; -- 4 Use this to index into the array
 function Get (The_Index : Natural) return Machine’Class is -- 5 Procedure with classwide parameter
 Data : array (1..2) of Machinery.Reference := -- 6 Anoymous array of access objects
 (1 => new Machinery.Machine, -- 7 Dynamically allocate new Object
 2 => new Rotating_Machinery.Rotational); -- 8 Dynamically allocate new Object
 begin -- 9
 return Data(Index).all)); -- 10 return the data access by Data(Index)
 end Get; -- 11
begin -- 12
 Ada.Integer_Text_IO.Get(Index); -- 13 Get the index for the next statement
 declare -- 14 Start a local declare block
 The_Machine : Machine’Class := Get(Index); -- 15 Declare and constrain classwide variable
 begin -- 16
 Turn_On(The_Machine); -- 17 Call classwide procedure
 end; -- 18
end Dynamic_Binding_Example_3; -- 19

Dynamic Binding

Dynamic Binding

Dynamic Binding

Polymorphism is essential for true object-oriented programming

Ada Distilled by Richard Riehle

 Page 62 of 117

9.4.2 Dynamic Binding with Mixed Library Units

Ada makes the dynamic binding (dispatching) feature really easy to use in your object-oriented
programming design. The following example shows a derivation class with a combined set of base
packages, child units, and client units. Notice that the base type is an abstract type. This means there can
be no instances of Machine, only of non-abstract derivations from Machine. Abstract type Machine is the
base type of Machine'Class.

package Machinery is -- 1
 type Machine is abstract tagged private; -- 2
 type Reference is access all Machine'Class; -- 3
 type Machine_Set is -- 4
 array (Positive range <>) of Reference; -- 5
 procedure Turn_On (M : in out Machine) is abstract; -- 6
 procedure Turn_Off (M : in out Machine) is abstract; -- 7
 function Is_On (M : in Machine) return Boolean; -- 8
private -- 9
 type Machine is abstract tagged record -- 10
 Is_On : Boolean := False; -- 11
 end record; -- 12
end Machinery; -- 13

package Machinery.Rotating is -- 1
 type Rotator_Type is new Machine with private; -- 2
 type Rotator_Type_Reference is access -- 3
 Rotator_Type'Class; -- 4
 overriding -- new reserved word clarifies overriding methods
 procedure Turn_On (R : in out Rotator_Type); -- 5
 overriding -- new reserved word clarifies overriding methods
 procedure Turn_Off (R : in out Rotator_Type); -- 6
 procedure Set_RPM (R : in out Rotator_Type; -- 7
 Speed : Natural); -- 8
 function RPM_Is (R : in Rotator_Type) -- 9
 return Natural; -- 10
private -- 11
 type Rotator_Type is new Machine with record -- 12
 RPM : Natural := 0; -- 13
 end record; -- 14
end Machinery.Rotating; -- 15

with Machinery; -- 1
package Oscillator is -- 2
 type Oscillator_Type is -- 3
 new Machinery.Machine with private; -- 4
 type Reference is -- 5
 access all Oscillator_Type'Class; -- 6
 overriding -- new reserved word clarifies overriding methods -- 7
 procedure Turn_On (OS : in out Oscillator_Type); -- 7.1
 overriding -- new reserved word clarifies overriding methods
 procedure Turn_Off (OS : in out Oscillator_Type); -- 8
 procedure Set_Frequency(OS : in out Oscillator_Type; -- 9
 To : in Float); -- 10
 function Frequency_Is(OS : Oscillator_Type) -- 11
 return Float; -- 12
private -- 13
 type Oscillator_Type is new Machinery.Machine -- 14
 with record -- 15
 Frequency : Float := 0.0; -- 16
 end record; -- 17
end Oscillator; -- 18

This package defines an abstrract
type (class root) along with two
abstract methods. Note the
important access type Reference that
can access any type derived from the
abstract type.

This is a child package of Machinery.
It contains a derivation from the
abstract type, Machine. Note that dot
notation is unnecessary because the
child unit has direct visibility to the
public part of the parent unit.

We inherit the Is_On function and
override the Turn_On and Turn_Off
methods.

This is a client package of Machinery.
It contains a derivation from the
abstract type, Machine. Note that dot
notation is required because the client
unit has no direct visibility to the
public part of the parent unit.

We inherit the Is_On function and
override the Turn_On and Turn_Off
methods. We also add another method
to set Frequency and one to get the
current value of Frequency

Followed by a child library unit specification with an extended type; direct visibility; dot notation unnecessary.

Followed by a client library unit specification with an extended type; no direct visibility; dot notation is necessary.

Followed by a client procedure; client never has direct visibility; dot notation is necessary to achieve visibility.

important

NEW
Ada 2005

NEW
Ada 2005

Ada Distilled by Richard Riehle

 Page 63 of 117

with Ada.Text_IO; -- 1 pre-defined library unit
with Ada.Integer_Text_IO; -- 2 pre-defined library unit
use Ada; -- 3 parent of pre-defined library units
with Machinery.Rotating; -- 4 context clause for library unit
with Oscillator; -- 5 client unit
procedure Test_Machinery is -- 6
 package Rotating renames Machinery.Rotating; -- 7 shorter name with renames clause
 The_Machinery : Machinery.Machine_Set(1..2):= -- 8 array instance, constrained
 (1 => new Oscillator.Oscillator_Type, -- 9 dynamic storage allocator
 2 => new Rotating.Rotator_Type); -- 10 dynamic storage allocator
 Input : Integer; -- 11 will be used as array index
begin -- 12
 loop -- 13
 Text_IO.Put("Enter either a 1 or a 2 "); -- 14 get the array index
 Integer_Text_IO.Get(Input); -- 15
 exit when Input not in 1..2; -- 16 Notice membership test here
 Machinery.Turn_On(The_Machinery(Input).all); -- 17 dynamic binding; Ada 95 style
 end loop; -- 18
end Test_Machinery; -- 19

The above version of Test_Machinery demonstrates two kinds of dynamic binding. In one case the derived
type, Rotator_Type is declared in a child library unit. In the other, the derived type is declared in a client
unit. There are no visibility clauses in Test_Machinery for any of the Machinery'Class types. When we
all Machinery.Turn_On or Machinery.Turn_Off, on the abstract type, Machine, we dynamically call the
correct version of Turn_On or Turn_Off because of the tag of the actual parameter in the call.

Ada 2005 allows for a distinguished receiver notation. The same program show above would look like:

-- One of the changes in Ada 2005 was the permission to use distinguished
-- receiver notation for tagged types. Below is an example of this.
with Ada.Text_IO; -- 1 pre-defined library unit
with Ada.Integer_Text_IO; -- 2 pre-defined library unit
use Ada; -- 3 parent of pre-defined library units
with Machinery.Rotating; -- 4 context clause for library unit
with Oscillator; -- 5 client unit
procedure Test_Machinery_2005 is -- 6
 package Rotating renames Machinery.Rotating; -- 7 shorter name with renames clause
 The_Machinery : Machinery.Machine_Set(1..2):= -- 8 array instance, constrained
 (1 => new Oscillator.Oscillator_Type, -- 9 dynamic storage allocator
 2 => new Rotating.Rotator_Type); -- 10 dynamic storage allocator
 Input : Integer; -- 11 will be used as array index
begin -- 12
 loop -- 13
 Text_IO.Put("Enter either a 1 or a 2 "); -- 14 get the array index
 Integer_Text_IO.Get(Input); -- 15
 exit when Input not in 1..2; -- 16 Notice membership test here
 The_Machinery(Input).all.Turn_On; -- 17 dynamic binding; distinguished receiver
 end loop; -- 19
end Test_Machinery_2005; -- 20

We could easily extend this design with more client packages. The dynamic dispatching model will
remain operational regardless of how many library units are added.

Dispatching works because of the tag. For each derivation of a tagged type the compiler creates a dispatch
table on the primitive operations for that type. The dispatch table is linked into the combined set of library
units so it is easily reachable from anywhere in the program.

The tag binds each object directly to its dispatch table. Anytime a primitive operation is called, the tag
directs the call to the dispatch table which, in -turn, references the appropriate primitive operation. This
works well when you have the objects heterogenuously stored in a list, array, or table. This property is
called object persistence. Ada allows object persistence even in files.

NEW
Ada 2005

Ada Distilled by Richard Riehle

 Page 64 of 117

9.4.3 Parameter Lists With Multiple Tagged Types

It is illegal to have a primitive operation with more than one definite tagged type in the parameter list.
However, a primitive operation may have one definite type and multiple classwide tagged types. The
following example demonstrates this. First we have the package specification.

package Double_Tagged_Type is -- 1
 type T1 is tagged private; -- 2
 type T1_Reference is access all T1'Class; -- 3
 type T1_Class is array (Positive range <>) of T1_Reference; -- 4
 type T2 is new T1 with private; -- 5
 procedure Process(D1 : in out T1; D2 : in out T1'Class); -- 6
 procedure Process(D2 : in out T2; D1 : in out T1'Class); -- 7
 procedure Process_All(D1 : in out T1'Class; D2 : in out T1'Class); -- 8
private -- 9
 type T1 is tagged null record; -- 10
 type T2 is new T1 with null record; -- 11
end Double_Tagged_Type; -- 12

This package contains a root type at Line 2 and a derivation at Line 5. The two procedures named Process
are overloaded and disambiguated because of the definite tagged type as a first parameter. Both versions
of Process are primitive methods (and will dispatch) for the named definite types. One of the types in each
parameter list must be classwide or this would not compile. Next we look at the package body.

with Ada.Text_IO; -- 1
use Ada; -- 2
package body Double_Tagged_Type is -- 3
 procedure Process (D1 : in out T1; D2 : in out T1'Class) is -- 4
 begin -- 5
 Text_IO.Put("D1 is concrete T1 and D2 is classwide"); -- 6
 end Process; -- 7
 procedure Process (D2 : in out T2; -- 8 definite parameter
 D1 : in out T1'Class) is -- 9 classwide parameter
 begin -- 10
 Text_IO.Put("D2 is concrete T1 and D1 is classwide"); -- 11
 end Process; -- 12
 procedure Process_All (D1 : in out T1'Class; -- 13 classwide parameter
 D2 : in out T1'Class) is -- 14 classwide parameter
 begin -- 15
 Process(D1, D2); -- 16
 end Process_All; -- 17
end Double_Tagged_Type; -- 18

We could have designed this without the Process_All procedure, but including it demonstrates the power
of a fully classwide subprogram. For example, it is often useful to have a function that returns a classwide
type. In this package, we might have wanted to create a function such as,

function Get (From : T1_Class; Index : Integer) return T1'Class;

The Get function would be espcially useful if we had a lot of derivations from T1 and a large array of such
objects. In the Double_Tagged_Type example, Get is unnecessary. Keep it in mind for future designs.
The following client of this package demonstrates how dynamic dispatching might take form.

with Double_Tagged_Type; -- 1 package defined above
with Ada.Text_IO; -- 2 package from Ada Annex A
with Ada.Integer_Text_IO; -- 3 Library instantiation
use Ada; -- 4 OK occurrence of visibility clause
procedure Test_Double_Tagged_Type is -- 5
 Data : Double_Tagged_Type.T1_Class (1..6) := -- 6
 (1 => new Double_Tagged_Type.T1, -- 7
 2 => new Double_Tagged_Type.T2, -- 8
 3 => new Double_Tagged_Type.T1, -- 9
 4 => new Double_Tagged_Type.T2, -- 10 dynamic allocation of instances

array of access objects; dyanamically
allocated in a ragged array

primitive operation
must be primitive
for only one type;
the other parameter
may be classwide

Call this with one definite
type and another that is
classwide. It does not
matter which comes first
since we have a primitive
for both versions.

line 8 is not actually
necessary; it is
simply here to
illustrate a point
about classwide
methods.

Primitive method that
includes a classwide
formal parameter.

Ada Distilled by Richard Riehle

 Page 65 of 117

 5 => new Double_Tagged_Type.T1, -- 11
 6 => new Double_Tagged_Type.T2); -- 12
 Input_1, Input_2 : Integer := 0; -- 13 for indices into the array
begin -- 14
 loop -- 15
 Text_IO.Put("Enter First Integer Value: "); -- 16 prompt for keyboard input
 Integer_Text_IO.Get(Input_1); -- 17 get index value for array
 exit when Input_1 not in 1..6; -- 18 early loop exit
 Text_IO.New_Line; -- 19 carriage-return/line-feed
 Text_IO.Put("Enter First Integer Value: "); -- 20 prompt for keyboard input
 Integer_Text_IO.Get(Input_2); -- 21 get index value for array
 exit when Input_2 not in 1..6; -- 22
 Double_Tagged_Type.Process_All(Data(Input_1).all, -- 23
 Data(Input_2).all); -- 24
 Text_IO.New_Line; -- 25
 end loop; -- 26
end Test_Double_Tagged_Type; -- 27

9.4.4 Dispatching on File Data

If you have your Ada Language Reference Manual handy, look for a package called
Ada.Streams.Stream_IO in Annex A. This is a special input-output package that lets you store a tagged
type with its tag intact. You can design Stream_IO files that are sequential or using some direct access
method. Because the tag is stored in the file, each object is virtually bound to its set of operations. We
start with the following package of tagged types and their associated methods:

package Machinery_For_Streams is -- 1 An Ada Module
 type Machine is abstract tagged private; -- 2 Tagged partial definition
 type Reference is access all Machine'Class; -- 3 Classwide access type
 type Machine_Set is array(Positive range <>) -- 4 Array of access values
 of Reference; -- 5
 procedure Turn_On (M : in out Machine) -- 6 Turn on the machine
 procedure Turn_Off (M : in out Machine); -- 7 Turn off the Machine
 function Is_On (M : Machine) return Boolean; -- 8 Is the Machine turned on?
 type Machine_1 is new Machine with private; -- 9
 function Create(S : String := "Machn_1") return Machine_1; -- 10
 procedure Turn_On (M1 : in out Machine_1); -- 11 Turn on the machine_1
 procedure Turn_Off (M1 : in out Machine_1); -- 12 Turn off the Machine_1
 type Machine_2 is new Machine with private; -- 13
 function Create(S : String := "Machn_2") return Machine_2; -- 14
 procedure Turn_On (M2 : in out Machine_2); -- 15 Turn on the machine_2
 procedure Turn_Off (M2 : in out Machine_2); -- 16 Turn off the Machine_2
 type Machine_3 is new Machine_1 with private; -- 17
 function Create(S : String := "Machn_3") return Machine_3; -- 18
 procedure Turn_On (M3 : in out Machine_3); -- 19 Turn on the machine_3
 procedure Turn_Off (M3 : in out Machine_3); -- 20 Turn off the Machine_3
 type Machine_4 is new Machine_3 with private; -- 21
 function Create(S : String := "Machn_4") return Machine_4; -- 22
 procedure Turn_On (M4 : in out Machine_4); -- 23 Turn on the machine_4
 procedure Turn_Off (M4 : in out Machine_4); -- 24 Turn off the Machine_4
 function Get (From : Machine_Set) -- 25
 return Machine'Class; -- 26
private -- 27 Begin private part
 type Machine is tagged -- 28 Full tagged definition
 record -- 29
 Identifier : String(1..7) := (others => ' '); -- 30 Machine content
 Is_On : Boolean := False; -- 31 Machine content;
 end record; -- 32 End of machine definition
 type Machine_1 is new Machine with null record; -- 33
 type Machine_2 is new Machine with null record; -- 34
 type Machine_3 is new Machine_1 with null record; -- 35
 type Machine_4 is new Machine_3 with null record; -- 36

dynamic dispatching on method
Process_All; this could avoid the
Process_All call and call Process
directly; this will also
dynamically dispatch.

Ada Distilled by Richard Riehle

 Page 66 of 117

end Machinery_For_Streams; -- 37 End of specification

Now we can create two procdedures using Stream_IO to store the items of type Machine'Class in a file
along with their tags. This permits the program to dispatch automatically on each item as it is retrieved
from the file and called by the Turn_On operation. The first procedure will output the data with its tag to
the Stream_IO file.

with Ada.Streams.Stream_Io; -- 1 Stream_IO from Annex A
use Ada.Streams; -- 2
with Ada.Text_IO; -- 3
use Ada; -- 4
with Machinery_For_Streams; -- 5
procedure Stream_Output_For_Machine is -- 6
 The_File : Stream_Io.File_Type; -- 7
 Reference : Stream_Io.Stream_Access; -- 8 Access value
 Data : Machinery_For_Streams.Machine_Set(1..9) -- 9
 := (1 => new Machinery_For_Streams.Machine_1, -- 10 Dynamic allocation of instances
 2 => new Machinery_For_Streams.Machine_2, -- 11
 3 => new Machinery_For_Streams.Machine_3, -- 12
 4 => new Machinery_For_Streams.Machine_3, -- 13
 5 => new Machinery_For_Streams.Machine_2, -- 14
 6 => new Machinery_For_Streams.Machine_1, -- 15
 7 => new Machinery_For_Streams.Machine_4, -- 16
 8 => new Machinery_For_Streams.Machine_1, -- 17
 9 => new Machinery_For_Streams.Machine_4); -- 18 End of dynamic allocation
 File_Name : String(1..80) := (others => ' '); -- 19 External file name
 File_Name_Length : Natural; -- 20
begin -- 21
 Text_IO.Put("Enter File Name: "); -- 22
 Text_IO.Get_Line(File_Name, File_Name_Length); -- 23
 Stream_Io.Create(File => The_File, -- 24
 Mode => Stream_IO.Out_File, -- 25
 Name => File_Name(1..File_Name_Length)); -- 26
 Reference := Stream_Io.Stream(The_File); -- 27
 for I in Data'Range -- 28
 loop -- 29
 Machinery_For_Streams. -- 31
 Machine'Class'Output(Reference, Data(I).all); -- 32
 end loop; -- 33
 Stream_Io.Close(The_File); -- 34
end Stream_Output_For_Machine; -- 35

The preceding procedure will put tagged data in the output file. The next procedure will retrieve the data
and call, polymorphically, the Turn_On method.

with Ada.Streams.Stream_Io; -- 1
use Ada.Streams; -- 2
with Ada.Text_IO; -- 3
use Ada; -- 4
with Machinery_For_Streams; -- 5
procedure Stream_Input_For_Machine is -- 6
 The_File : Stream_Io.File_Type; -- 7
 Reference : Stream_Io.Stream_Access; -- 8
 File_Name : String(1..80) := (others => ' '); -- 9
 File_Name_Length : Natural; -- 10
begin -- 11
 Text_IO.Put("Enter File Name: "); -- 12
 Text_IO.Get_Line(File_Name, File_Name_Length); -- 13
 Stream_Io.Open(File => The_File, -- 14
 Mode => Stream_IO.In_File, -- 15
 Name => File_Name(1..File_Name_Length)); -- 16
 Reference := Stream_Io.Stream(The_File); -- 17 Sequential Stream File

(continued on next page)

 while not Stream_Io.End_Of_File (The_File) -- 18
 loop -- 19

Allocate some data
in an array for the
stream file.

Create a Stream_IO output file.

Output data
from array to
stream file.

Get tagged
data from a
Stream file.

Ada Distilled by Richard Riehle

 Page 67 of 117

 declare -- 20
 Data : Machinery_For_Streams.Machine'Class -- 21 Data in a declare block
 := Machinery_For_Streams. -- 22 so it can be dynamically
 Machine'Class'Input(Reference); -- 23 initialized as classwide
 begin -- 24
 Machinery_For_Streams.Turn_On(Data); -- 25 Dispatching Call
 end; -- 26
 end loop; -- 27
 Stream_Io.Close(The_File); -- 28
end Stream_Input_For_Machine; -- 29

This is a sequential Stream_IO file. It would be perfectly OK to create a random access file using some
kind of key processing algorithm such as a B-Tree. In this case, you would be able to create a true object-
oriented database system. People have used Ada for object-oriented database applications successfully.

On Lines 21 through 23 we initialize the declaration Data when it is declared. A tagged object must
always be initialized when it is declared. Initialization may be static or dynamic. In this example, the
initialization is dynamic. This is analogous to an unconstrained array such as a type String, where the size
of the object is not known until run-time. The earlier example of a Get function also illustrates a
technique for dynanically constraining a tagged object declaration.

Ada Distilled for Ada 2005 by Richard Riehle

 Page 68 of 117

10. Using Standard Libraries and Annexes

The Ada language standard is published in two parts: Core language and Annexes. The Annexes, labled
A through H, include some standard libary units. One library unit in Annex A, package Standard, is
always in scope and always visible. Other libraries support special needs such as real-time system
development, platform-specific systems programming, distributed systems, and safety and security. Still
other units support input-output, string handling, and mathematical functions.

The most commonly used and misused library unit is package Standard, where all the predefined types
(Boolean, Integer, Float, Character and String) are declared. Never use Standard numeric types for
production software. Annexes A through K constitute some implementations of the language, but never
define new syntax or semantics. Annex K defines the equivalent of intrinsic functions, called Attributes in
Ada, that enable portability of algorithmic design.

Ada 2005 adds some new standard libraries. Also, there are more new libraries that are not part of the
standard, but are useful for building a varietyof different kinds of software. The GtkAda library is
especially useful for creating windowing applications.

10.1 Attributes for Portability (ALRM Annex K)

Attributes enhance your ability to create flexibile, portable, and easy to read code. Many attributes behave
like built-in functions. The format for an attribute is a prefix of a type or object name along followed by
an apostrophe, followed by the attribute itself. Attributes may have parameters. The format is,

 Q'Attribute where there is no parameter for the attribute
 Q'Attribute(parameter) where there is a parameter for the attibute

In an expression, an attribute might be coded as,

 X := Q'Attribute where there is no parameter for the attribute
 X := Q'Attribute(parameter) where there is a parameter for the attibute
 for X use Y'Attribute in a representation specification clause

along with other kinds of attribute expressions such as conditional and declarative statements.
The prefix Q, shown above can be replaced by any of a number of Ada entities. When the attributes are
defined in Annex K, they are shown with a prefix that indicates what kind of prefix is required. The
possibilities are summarized in the following table.

Examples of attributes are:

Integer'Last The last value in the set for predefined type Integer
Float'Last The last value for predefined type Float
T1'Callable Is task T1 still callable
Vector'Last Where Vector is an array, Last is largest index value

Legend for Attribute Prefixes

P Subprogram
X an object or varible name
S type or subtype identifier
E entry or exception
T task
R record (component is R.C')
A array

The term, attribute, was used in Ada before it became a term in OOP.
It has a different meaning from that in the OOP communiity.

The apostrophe is
pronounced, "tic." In
this example we would
say, Q tic Attribute

Ada Distilled by Richard Riehle

 Page 69 of 117

Vector'Length Where Vector is an array, Length is the length of the array
Byte'Size The number of bits in type Byte
X'Valid Is instance named X a valid representation of its own type?

Each attribute is rigorously defined for its associated entity. As mentioned above, many attibutes make
floating point operations more precise. Other attributes allow one to generalize an algorithm so it can be
used for any type in a given set of types. Consider the following generic function, Next.

generic -- 1
 type Element is (<>); -- 2
function Next (Data : Element) return Element; -- 3

function Next (Data : Element) return Element is -- 1
begin -- 2
 if Data = Element'Last then -- 3
 return Element'First; -- 4
 else -- 5
 return Element'Succ(Data); -- 6
 end if; -- 7
end Next; -- 8

Notice how we are able to use attibutes in this algorithm to generalize the code. Element can be
instantiated with any discrete type. This is a powerful feature of Ada. It has been copied by other
languages, but never quite as well as originally designed in Ada.

10.1.1 Classification of Attributes

Some attributes are unique to specific types. Others are for machine/platform representation specifications.
Still others are specific to object-oriented programming. The following charts organize some common
attributes according to typical usage.

The floating-point attributes are particularly useful for numerically intensive applications such as scientific,
engineering, and analytical programs. In particular, note the presence of both Machine number and Model
number attributes. These can be used to create highly portable numerical software. Some of the above
attributes also apply to fixed-point types.

The following attributes are available for any scalar type. As a reminder, scalar types include all integers,
enumeration types, floating-point types and fixed-point types. Scalar does not include records, arrays,
access types, private types, task types, or protected types.

Of special interest in this list are the attributes, S'Base and S'Valid. The 'Base attribute
encompasses the range supported for every unconstrained object of the type. It enables the designer to

Generic formal discrete type parameter

Body of generic function; note the use
of attributes 'Last, 'First, and 'Succ
to generalize the algorithm.

Floating Point Attributes (where S is name of a floating point type)

S'Adjacent S'Fraction S'Machine_Radix S'Safe_First
S'Ceiling S'Leading_Part S'Model S'Safe_Last
S'Compose S'Machine S'Model_Emin S'Scaling
S'Copy_Sign S'Machine_Emax S'Model_Epsilon S'Signed_Zeros
S'Denorm S'Machine_Emin S'Model_Mantissa S'Unbiased_Rounding
S'Digits S'Machine_Mantissa S'Model_Small
S'Exponent S'Machine_Overflows S'Remainder
S'Floor S'Machine_Radix S'Rounding

Scalar Type Attributes (where S is name of a scalar type)

S'Base S'Pred S'Wide_Image
S'First S'Range S'Wide_Value
S'Image S'Succ S'Wide_Width
S'Last S'Valid S'Width
S'Max S'Value
S'Min

Ada Distilled by Richard Riehle

 Page 70 of 117

create functions that ensure there will be no constraint_error due to overflow of intermediate range
overflow. The Valid attribute is used to test the result of an expression before using that result in another
expression. It is also useful in avoiding exceptions when using features such as unchecked_conversion.

Array attributes are among the most useful in developing portable Ada code. The are especially good to
use in generic reusable components designed as unconstrained array types.

Actually, all the attributes in the preceding box in which the class does not appear are used for Stream
operations. We include them together because they are most often used in conjunction with an object-
oriented programming design.

The above attributes cover everything from tasks to exceptions. As with other attributes, these can be
used to make a design more portable. We have described the attributes declared in Annex K of the Ada
Language Reference Manual. A compiler publisher is permitted to add attributes for their specific
compiler. For example, the GNAT compiler has a special attribute, Unrestricted_Access, which
corresponds to Unchecked_Access for subprogram access objects.

10.2 String Examples

String handling is a simple idea that often becomes complicated in some programming environments. In
particular, C, C++, and COBOL have made string handling more difficult than it needs to be. Ada is
especially handy for string manipulation. Not only is an Ada string easy to declare and process, the
predefined libraries (in Annex A) support most of the operations one might want to do on strings. Ada
supports three kinds of strings: fixed strings, bounded strings, and unbounded strings. One kind of string
may easily be converted into another kind of string. Fixed strings are those defined in package Standard.

The following program illustrates several additional features of the language. Notice the syntax for
declaring a constant. On line 3, if the string variable is declared with a range constraint, the initializing
string must have exactly the same number of characters. On line 4, if there is no range constraint, the index
of the first character is 1 and the index of the last character is whatever the character count might be, in this

Array Type/Object Attributes (where A is name of a array type or array object)

A'First A'Last(N) A'Range(N) A'Constrained
A'First(N) A'Range A'Length A'Component_Size
A'Last A'Length(N)

Other Attributes (where prefix is as shown in the legend box at the beginning of this section)

P'Access X'Access S'Aft X'Alignment
S'Bit_Order P'Body_Version T'Callable E'Caller
E'Count S'Definite S'Delta E'Identity
T'Identity R.C'First_Bit R.C'Last_Bit S'Modulus
D'Partition_ID S'Pos R.C'Position S'Scale
S'Size X'Size S'Small S'Storage_Pool
T'Terminated S'Val T'Storage_Size S'Storage_Size
P'Version X'Unchecked_Access

Object-Oriented Progamming Attributes (Using legend from beginning of this section)

S'Class S'Class'Input S'Input S'Class'Output
S'Output S'Class'Read S'Read S'Tag
X'Tag S'Class'Write S'Write

Ada Distilled by Richard Riehle

 Page 71 of 117

case 9. Line 15 “slides” a string slice from one string into a slice in another string using the assignment
operator and parenthetical notation to designate the source and target slices.

with Ada.Text_IO; -- 1 Put Ada.Text_IO library unit in scope; 10.1.2, A.10
procedure Bon_Jour is -- 2 Parameterless declaration; 6.3
 Hello : String (1..5) := “Salut”; -- 3 Number of characters must match range; 4.1, A.1/37
 Howdy : String := “Howdy Joe”; -- 4 Compiler determines constraint from string; 2.6, 3.3.1/13
 Bon_Jour : constant String := “Bon Jour”; -- 5 A true constant; cannot be altered; 3.3.1/5-6
begin -- 6 Begins sequence of algorithmic statements; 6.3
 Ada.Text_IO.Put(Hello); -- 7 Put a string with no carriage return; A.10.6
 Ada.Text_IO.Set_Col(20); -- 8 On same line, position cursor at column 20; A.10.5
 Ada.Text_IO.Put_Line(Hello); -- 9 Put a string with a carriage return / line feed; A.10.7
 Ada.Text_IO.Put(Howdy); -- 10 Put a string with no carriage return; A.10.7
 Ada.Text_IO.Set_Col (20); -- 11 Set the cursor to column 20 / line feed; A.10.5
 Ada.Text_IO.Put(Howdy); -- 12 Put a string with no carriage return / line feed; A.10.7
 Ada.Text_IO.New_Line(2); -- 13 Position cursor to a new line; double space; A.10.5
 Ada.Text_IO.Put_Line(Bon_Jour); -- 14 Put a constant to the screen with CR/LF; A.10.7
 Howdy(7..9) := Bon_Jour(1..3); -- 15 Slide (assign) one string slice into another; 4.1.2
 Ada.Text_IO.Put_Line (Howdy); -- 16 Put the modified string with CR/LF; A.10.7
end Bon_Jour; -- 17 Note the label for the enclosing procedure; 6.3

There are better alternatives for String handling in a set of packages in Annex A.4 Here is a simple
example of one of the packages. This is easier than string slicing and other low-level code.

10.2.1 Using the Fixed Strings Package

with Ada.Text_IO; -- 1 Put Ada.Text_IO library unit in scope; 10.1.2, A.10
with Ada.Strings.Fixed; -- 2 A language defined string package A.4.1, A.4.3
use Ada; -- 3 Makes all of package Ada visible
procedure Ni_Hao_Ma is -- 4 Hello in Mandarin Chinese 6.3
 Greeting : String(1..80); -- 5 80 character string; String defined in package Standard ALRM A.1
 Farewell : String(1..120); -- 6 120 character string
begin -- 7 Start sequence of statements
 Ada.Strings.Fixed.Move(Greeting, Farewell); -- 8 Move shorter string to longer string; may also move longer to shorter
end Ni_Hao_Ma; -- 9 End of procedure scope.

10.2.2 Bounded Strings

It is also possible to do operations on Bounded and Unbounded_Strings. Bounded strings are those with
a fixed size at compilation time through a generic instantiation.

10.2.3 Unbounded Strings

Unbounded strings are those which can be of any size, mixed size, etc. Many compilers will do
automatic garbage collection of unbounded strings. If you want to try these two features of the language,
they are defined in Annex A.4 of the Ada Language Reference Manual.

Consider the following program that lets you concatenate data to an unbounded string, convert that string
to a standard fixed string, and then print it out to the screen.

This is useful when you have a need for an input buffer of unknown size.
 with Ada.Strings.Unbounded; -- 1
 with Ada.Text_IO; -- 2
 use Ada; use Strings; -- 3
 procedure Unbounded_String_Demonstration is -- 4
 Input : Character := ' '; -- 5 Element of the buffer
 Output : String (1..80) := (others => ' '); -- 6 Fixed length output string
 Buffer : Unbounded.Unbounded_String; -- 7 An unbounded buffer of input

Unbounded strings are usually
implemented with automatic
garbage collection. This saves
storage but any kind of
automatic garbage collection is
time non-determinate.

ALRM A.4.4.4 package Ada.Strings.Bounded

ALRM A.4.4.4 package Ada.Strings.Fixed

ALRM A.4.4.4 package Ada.Strings.UnBounded

Ada Language Reference Manual

Ada Distilled by Richard Riehle

 Page 72 of 117

 Length : Natural; -- 8 Size of the buffer
 begin -- 9
 loop -- 10
 Text_IO.Put("Enter a character: "); -- 11
 Text_IO.Get(Input); -- 12 Get the character
 exit when Input = '~'; -- 13 Exit when tilde is entered
 Unbounded.Append(Source => Buffer, New_Item => Input); -- 14 Add the character to the buffer
 end loop; -- 15
 Length := Unbounded.Length(Buffer); -- 16 How big is the buffer?
 Output(1..Length) := Unbounded.To_String(Buffer); -- 17 Copy the buffer to a String
 Text_IO.Put_Line(Output(1..Length)); -- 18 Output the entire string
 end Unbounded_String_Demonstration; -- 19

10.2.4 Other String Operations

There are many other facilities for string handling in Ada. We show here an example from another useful
library, package Ada.Characters. Here is a little package that converts lower case letters to upper case.

with Ada.Text_IO; -- 1 Put Ada.Text_IO library unit in scope; 10.1.2, A.10
with Ada.Characters.Handling; -- 2 Character Handling Operations A.3.2
use Ada; -- 3 Makes package Ada visible
procedure Arirang is -- 4 Famous Korean love song 6.3
 Data : String := "arirang"; -- 5 initialized lower case character string
begin -- 6 Start sequence of statements
 Text_IO.Put(Characters.Handling.To_Upper(Data)); -- 7 Convert output to upper case characters and print it
end Arirang; -- 8 End of procedure scope.

10.3 Converting Strings to Other Types

Sometimes it is necessary to represent a string value in some other format. Other times we need to convert
some other type to a string representation. One could easily write a small generic subprogram to
accomplish this. Also, Ada provides an unchecked conversion capability. Unchecked features are seldom
used since they circumvent the fundamental philosophy of Ada: every construct should be, by default,
safe.

10.3.1 Converting a String to an Scalar Type

The following procedure demonstrates many of the features of the language for converting a string to an integer, a
string to a floating point, a string to an unsigned number, and a string to an enumerated value.

with Ada.Text_IO; -- 1
with Ada.Integer_Text_IO; -- 2
with Ada.Float_Text_IO; -- 3
use Ada; -- It is generally OK to use a visibility clause for package Ada -- 4
procedure String_To_Scalar_Demonstration is -- 5
 type Spectrum is (Red, Orange, Yellow, Green, Blue, Indigo, Violet); -- 6
 type Unsigned is mod 2**8; -- Reminder: mod defines an unsigned integer type -- 7
 Num : Integer := 0; -- 8
 FNum : Float := 0.0; -- 9
 Color : Spectrum := Blue; -- 10
 MNum : Unsigned := 0; -- 11
 Text : String(1..10); -- 12
 Text_Integer : String := "451"; -- 13
 Text_Float : String := "360.0"; -- 14
 Text_Color : String := "Orange"; -- 15
 Text_Unsigned : String := "42"; -- 16
 Integer_Last : Natural; -- 17
 Float_Last : Natural; -- 18
 Spectrum_Last : Natural; -- 19
 Modular_Last : Natural; -- 20
 package SIO is new Text_IO.Enumeration_IO(Enum => Spectrum); -- 21
 package MIO is new Text_IO.Modular_IO (Num => Unsigned); -- 22

Instantiate IO
packages for each
data type that needs
conversion to or from
a string.

Note the many variations possible

Good use of named
association

Ada Distilled by Richard Riehle

 Page 73 of 117

 package IIO is new Text_IO.Integer_IO (Num => Integer); -- 23
 package FIO is new Text_IO.Float_IO (Num => Float); -- 24
begin -- 25
 Text_IO.Put_Line("The String Values are: "); -- 26
 Text_IO.Put("Orange for Enumerated Type "); -- 27
 Text_IO.Put_Line("451 for Integer Type "); -- 28
 Text_IO.Put("360.0 for Float Type "); -- 29
 Text_IO.Put_Line("42 for Unsigned Type "); -- 30
 Text_IO.New_Line; -- 31
 -- Example 1; using the Value attribute -- 32
 Text_IO.New_Line; -- 33
 Text_IO.Put_Line(" >>> Example 1; Using 'Value Attribute <<< "); -- 34
 Color := Spectrum'Value(Text_Color); -- 35
 Num := Integer'Value(Text_Integer); -- See Annex K for meaning of 'Value -- 36
 FNum := Float'Value(Text_Float); -- 37
 MNum := Unsigned'Value(Text_Unsigned); -- 38
 SIO.Put(Color); Text_IO.New_Line; -- I/O for Spectrum data type -- 39
 IIO.Put(Num); Text_IO.New_Line; -- I/O for Integer data type -- 40
 FIO.Put(Fnum); Text_IO.New_Line; -- I/O for Float data type -- 41
 MIO.Put(MNum); Text_IO.New_Line; -- I/O for Modular data type -- 42
 Text_IO.New_Line; -- 43
 -- Example 2; using the procedures of pre-instantiated packages -- 44
 Text_IO.Put_Line(" >>>> Example 2; using pre-instantiated packages << "); -- 45
 Integer_Text_IO.Get(From => Text_Integer, Item => Num,Last => Integer_Last); -- 46
 Float_Text_IO.Get(From => Text_Float, Item => FNum,Last => Float_Last); -- 47
 Integer_Text_IO.Put(Num); Text_IO.New_Line; -- 48
 Float_Text_IO.Put (FNum, Fore => 3, Aft => 3, Exp => 0); -- 49
 Text_IO.New_Line(2); -- 50
 -- Example 3; using your own instantiated packages -- 51
 Text_IO.Put_Line(" >>>> Example 3; Using own instantiations <<<< "); -- 52
 Text_IO.New_Line; -- 53
 SIO.Get(From => Text_Color, Item => Color, Last => Spectrum_Last); -- 54
 MIO.Get(From => Text_Unsigned, Item => MNum, Last => Modular_Last); -- 55
 IIO.Get(From => Text_Integer, Item => Num, Last => Integer_Last); -- 56
 FIO.Get(From => Text_Float, Item => FNum, Last => Float_Last); -- 57
 -- Now Write the Results to the Screen -- 58
 SIO.Put(Item => Color); Text_IO.New_Line; -- 59
 IIO.Put(Item => Num); Text_IO.New_Line; -- 60
 FIO.Put(Item => FNum, Fore => 3, Aft => 3, Exp => 0); -- 61
 Text_IO.New_Line; -- 62
 MIO.Put(Item => MNum); -- 63
 Text_IO.New_Line(2); -- 64
 Text_IO.Put_Line(" **** End of String_To_Scalar_Demonstration **** "); -- 65
end String_To_Scalar_Demonstration; -- 66

10.3.2 Converting a Scalar to a String

This program is the opposite of the one in 10.2.2, above. We can convert almost any kind of scalar value
to a string. The package, Ada.Text_IO contains nested generic packages that make it easy to convert any
kind of number to a string. The programmer may also use the X'Image attribute (See ALRM Annex K)
from an internal (machine based) representation to a string.

with Ada.Text_IO, Ada.Integer_Text_IO, Ada.Float_Text_IO; -- 1
use Ada; -- 2 May safely use Ada
procedure Scalar_To_String_Demonstration is -- 3 Convert a string to a scalar object
 type Spectrum is (Red, Orange, Yellow, Green, Blue, Indigo, Violet); -- 4 Enumerated type
 type Unsigned is mod 2**8; -- 5 Unsigned modular type
 Num : Integer := 451; -- 6 Combustion point of paper in farenheit
 FNum : Float := 360.0; -- 7 Don't go off on a tangent
 Color : Spectrum := Blue; -- 8 Hmmmm. "You don't look bluish."
 MNum : Unsigned := 42; -- 9 Life, the Universe, and Everything
 Text : String(1..10); -- 10
 package SIO is new Text_IO.Enumeration_IO(Enum => Spectrum); -- 11 Instantiate IO for enumerated type
 package MIO is new Text_IO.Modular_IO (Num => Unsigned); -- 12 Instantiate IO for modular type
 package IIO is new Text_IO.Integer_IO (Num => Integer); -- 13 Instantiate IO for predefined Integer
 package FIO is new Text_IO.Float_IO (Num => Float); -- 14 Instantiate IO for predefined Float
begin -- 15
 Text_IO.Put_Line(" Example 1; Using 'Image Attribute "); -- 17 Example 1; using the image attribute
 Text_IO.Put_Line(Spectrum'Image(Color)); -- 18

Output using the 'Image attributes from
Annex K. Leading space for positive
values. Leading sign for negative values.

Note the many variations possible

Preamble stuff so reader can
see how the program
corresponds to reality

Named association

Named association

Ada Distilled by Richard Riehle

 Page 74 of 117

 Text_IO.Put_Line(Unsigned'Image(MNum)); -- 19
 Text_IO.Put_Line(Integer'Image(Num)); -- 20
 Text_IO.Put_Line(Float'Image(FNum)); -- 21
 Text_IO.New_Line; -- 22
 Text_IO.Put_Line(" Example 2; using pre-instantiated packages "); -- 24 Example 2; pre-instantiated packages
 Integer_Text_IO.Put(Num); Text_IO.New_Line; -- 25
 Float_Text_IO.Put (FNum, Fore => 3, Aft => 3, Exp => 0); -- 26 Named association for parameters
 Text_IO.New_Line(2); -- 27 Example 3; own instantiated packages
 Text_IO.Put_Line(" Example 3; Using own instantiations "); -- 29
 SIO.Put(Color); Text_IO.New_Line; -- 30 Two statements on single line
 MIO.Put(MNum); Text_IO.New_Line; -- 31
 IIO.Put(Num); Text_IO.New_Line; -- 32
 FIO.Put(FNum, Fore => 3, Aft => 3, Exp => 0); -- 33 Named association for parameters
 Text_IO.New_Line(2); -- 34
 -- Example 4; convert to text and then print -- 35
 Text_IO.Put_Line("Example 4; Convert to text, then print "); -- 36
 SIO.Put(To => Text, Item => Color); -- 37 Named association for parameters
 Text_IO.Put_Line(Text); -- 38
 MIO.Put(To => Text, Item => MNum); -- 39
 Text_IO.Put_Line(Text); -- 40
 IIO.Put(To => Text, Item => Num); -- 41
 Text_IO.Put_Line(Text); -- 42
 FIO.Put(To => Text, Item => FNum, Aft => 3, Exp => 0); -- 43
 Text_IO.Put_Line(Text); -- 44
 Text_IO.New_Line; -- 45
 Text_IO.Put_Line("End of Image_Demonstration "); -- 46
end Scalar_To_String_Demonstration; -- 47

10.4 Wide Strings
Both Ada and Java are designed to support international (Unicode) character sets. Ada calls this wide-
strings. We will add some examples of wide string processing in a future edition of Ada Distilled.

Convert each value to a String
and then print it. This is built-in
to Ada.Text_IO. Don't write
your own version of this.

Ada Distilled by Richard Riehle

 Page 75 of 117

Reminder:

Every Ada program
body can be viewed
in terms of the Ada
comb even if one
tooth of the comb is
not shown.

11. Exception Management

Ada 83 was one of the first languages to include exception management. Nearly all modern programming
languages now have this feature. Exceptions are an essential feature of typed-languages that support
encapsulation. Think of an exception handler as a kind of software circuit-breaker. Just a real circuit-
breaker prevents your house from catching fire, the software circuit-breaker can prevent your program
from aborting at uncontrollable points during execution.

Ada 95 has four predefined exceptions and allows the programmer to declare exceptions specific to the
problem being solved. Predefined exceptions from package Standard (Annex A.1) are:

Constraint_Error, Storage_Error, Program_Error, Tasking_Error

Input/output errors in package IO_Exceptions (Annex A.13) are,

Status_Error, Mode_Error, Name_Error, Use_Error, Device_Error,
End_Error, Data_Error, Layout_Error

Other Annex packages define other kinds of exceptions. Exceptions appear in library packages from
various software repositories, including the many freeware packages available from Internet sources.

11.1 Handling an Exception (ALRM 11.4)

An exception handler must appear in a begin...end sequence. Therfore it might appear as,

function Ohm (Volt, Amp : Float) return Float is -- 1 Parameterized function declaration; 6.3
 Result : Float := 0.0; -- 2 Initialized local variable
begin -- 3 Begins algorithmic statements; 6.3
 Result := Volt / Amp; -- 4 Simple division; cannot divide by zero
 return Result; -- 5
exception -- 6 If we try to divide by zero, land here.
 when Constraint_Error => -- 7 Raised on divide-by-zero; handle it here.
 Text_IO.Put_Line(“Divide by Zero”); -- 8 Display the error on the console
 raise; -- 9 Re-raises the exception after handling it.
end Ohm; -- 10 Scope terminator with name of unit 6.3

It is better not to return an invalid value from a function so it is useful to raise an exception. Sometimes
you want a begin ... exception ... end sequence in-line in other code. To call the function Ohm from a
procedure, we would want another exception handler. Since the handler re-raised the same exception (on
line 8), we need another handler in the calling subprogram.

with Ada.Exceptions; with Ohm; -- 1 Chapter 11.4.1 ALRM; also, see the end of this chapter
with Ada.Text_IO; use Ada; -- 2 OK for use clause on package Ada
procedure Electric (Amp, Volt : in Float; -- 3 In mode parameters
 Resistance : out Float) is -- 4 Out mode parameter; 6.3
 function MSG (X :.Exceptions.Exception_Occurrence) -- 5 Profile for Exception_Message function
 return String -- 6 Return type for Exception_Message
 renames Exceptions.Exception_Message; -- 7 Rename it to three character function name
begin -- 8 Begins sequence of algorithmic statements; 6.3
 Resistance := Ohm(Amp => Amp, Volt => Volt); -- 9 Simple division operation; cannot divide by zero
exception -- 10 If we try to divide by zero, land here.
 when Electric_Error: -- 11 data type is Ada.Exceptions.Exception_Occurrence
 Constraint_Error => -- 12 This error is raised on divide-by-zero; handle it here.
 Text_IO.Put_Line(MSG(Electric_Error)); -- 13 See lines 5-7; renamed Exception_Message function
 Exceptions.Reraise_Occurrence(Electric_Error); -- 14 Procedure for re-raising the exception by occurrence name
end Electric; -- 15 Scope terminator with name of unit 6.3

Ada Distilled by Richard Riehle

 Page 76 of 117

11.2 Declaring your Own Exceptions

Ada allows user-defined exceptions. These can be declared and raised by the designer.

with Ada.Exceptions; use Ada; -- 1 Chapter 11.4.1 ALRM
package Exception_Manager is -- 2 A typical exception/error management package
 Overflow : exception; -- 3 Own named exception; User-defined exception
 Underflow : exception; -- 4 Ada exception is not a first class object
 Divide_By_Zero : exception; -- 5 This could be handy for some applications
 type Exception_Store is tagged limited private; -- 6 A place to store exception occurrences
 type Reference is access all Exception_Store’Class; -- 7 In case you need to reference this in another way
 procedure Save ... -- 8 Saves an exception to Exception_Store
 procedure Log ... -- 9 Logs an exception
 procedure Display ... -- 10 Displays and exception
private -- 11 Useful to have more operations before this
 type Exception_Set is array (1..100) -- 12 Array of access values to Exception_Occurrence
 of Exceptions.Exception_Occurrence_Access; -- 13 Exception_Occurrence_Access is an access type
 type Exception_Store is tagged -- 14 A record containing an array of exceptions
 record -- 15
 Current_Exception : Natural := 0; -- 16 And index over the Exception_Set
 Exception_Set; -- 17 Instance of type from Lines 12-13
 end record; -- 18
end Exception_Manager; -- 19 Package scope terminator

with Exception_Manager; -- 1 Put Exception_Manager package in scope
package Application_With_Exception is -- 2
 type Application_Type is private; -- 3 Private here is partial definition of type
 procedure Start (Data : in out Application_Type); -- 4 Create and initialize the application
 procedure Restart (Data : in out Application_Type); -- 5 If there is an exception, you may need to restart
 procedure Stop (Data : in out Application_Type); -- 6 Stop the application; may be able to restart
 procedure Cleanup (Data : in out Application_Type); -- 7 When there is an error, call this procedure
 procedure Finalization (Data : in out Application_Type); -- 8 Not be confused with Ada.Finalization
 Application_Exception : exception; -- 9 Your locally defined exception for this package
private -- 10 Nothing is public from here forward
 type Application_Type is ... -- requires full definition of type -- 11 Full definition of the private type
end Application_With_Exception; -- 12 End of the specification unit. Needs a body.

In the Application_With_Exception package, any one of the subprograms defined might raise an
Application_Exception or some other kind of exception. Since we have not used any of the resources of
Exception_Manager, it would be better to defer its context clause (put it in scope) in the package body.

with Exception_Manager; -- 1 Localize the context clause to package body
package body Application_With_Exception is -- 2
 -- Implementation code for the package body -- 3
end Application_With_Exception; -- 4

11.3 Raising Exceptions

Exceptions should indicate a strange event that cannot be handled with the usual coding conventions. Ada
95 includes an attribute, X'Valid, to help the developer avoid exceptions on scalar types. Consider this
program that uses X'Valid.

First an exception should be visible for the user.

procedure Test_The_Valid_Attribute is -- 1
 type Real is digits 7; -- 2
 type Number is range 0..32_767; -- 3
 type Compound is -- 4
 record -- 5
 Weight : Real := 42.0; -- 6
 Height : Number; -- 7

Scalar types declared within the record
definition. X'Valid will not work on a
record but can be used on scalar
components.

Given: the following visible declaration:
 Compound_Data_Error : exception;

ellipses are not part of Ada

Ada Distilled by Richard Riehle

 Page 77 of 117

 Width : Number; -- 8
 end record; -- 9
 Data : Compound := (80.0, 64, 97); -- 10 Record initilialized with aggregate
begin -- 11
 if Data.Weight'Valid then -- 12 Test the Weight to see if it is valid
 null; -- 13 Usually some sequence of statements
 elsif Data.Height'Valid then -- 14 Test the Height to see if it is valid
 null; -- 15 Usually some sequence of statements
 elsif Data.Width'Valid then -- 16 Test the Widht to see if it is valid
 null; -- 17 Usually some sequence of statements
 else -- 18 An else part is usually a good idea
 raise Compound_Data_Error; -- 19 Failed all around; raise an exception
 end if; -- 20
end Test_The_Valid_Attribute; -- 21

Not all Ada designers agree with the above example. It is your responsibility to decide whether this
appropriate in designing your software. The important consideration is that you may define and raise
exceptions when you determine they are necessary. Object-oriented programming has a strong bias toward
encapsulation. When encapsulation is strong, an exception may be the appropriate technique to notify a
client that something has gone wrong within the software object they are using.

11.4 Package Ada.Exceptions

The following language-defined can be useful for some kinds of applications.

package Ada.Exceptions is -- This is an Ada language defined package -- 1 ALRM 11.4.1
 type Exception_Id is private; -- 2 predefined assignment
 Null_Id : constant Exception_Id; -- 3 this is called a deferred constant
 function Exception_Name(Id : Exception_Id) return String; -- 4 Associate a string with an exception
 type Exception_Occurrence is limited private; -- 5 no assignment operation
 type Exception_Occurrence_Access is access all Exception_Occurrence; -- 6 useful for a limited private type
 Null_Occurrence : constant Exception_Occurrence; -- 7 Deferred constant; no assignment
 procedure Raise_Exception(E : in Exception_Id; Message : in String := ""); -- 8 Exception_ID from line 2
 function Exception_Message(X : Exception_Occurrence) return String; -- 9 String value of exception message
 procedure Reraise_Occurrence(X : in Exception_Occurrence); -- 10 After handling, raise it again
 function Exception_Identity(X : Exception_Occurrence) return Exception_Id; -- 11 Exception_ID from line 2
 function Exception_Name(X : Exception_Occurrence) return String; -- 12 String value of Exception_Occurrence
 -- Same as Exception_Name(Exception_Identity(X)). -- 13
 function Exception_Information(X : Exception_Occurrence) return String; -- 14 Some compilers give lots of info here
 procedure Save_Occurrence(Target : out Exception_Occurrence; -- 15 A lot like a copy or assignment
 Source : in Exception_Occurrence); -- 16
 function Save_Occurrence(Source : Exception_Occurrence) -- 17 Create an access object
 return Exception_Occurrence_Access; -- 18
private -- 19
 ... -- not specified by the language -- 20
end Ada.Exceptions; -- 21

One can design with this package so objects of type Exception_Occurrence are stored in a volatile data
structure (list, array, etc) and held for later processing. Any exception can be converted into a text format
and stored as text in a log file. This feature is useful for non-stop systems that require handling exceptions
but cannot stop executing for each processing anomaly. Even though standard Ada exceptions are not
first-class objects, the availability of Exception_ID and Exception_Occurrence gives the designer an
opportunity to promote them to first-class objects. This enables the efficiency associated with ordinary
Ada exceptions with the less efficient option of designing them as objects.

Ada 95 only

Ada Distilled by Richard Riehle

 Page 78 of 117

12. Generic Components

12.1 Generic Subprograms

In Ada, an algorithm or object can be designed as type-independent, and can be put in the library as a
generic reusable component. There are huge libraries of generic Ada components already in place such as
the Public Ada Library. Here are examples of simple generic subprograms. The first example is a
generalization of the Next function shown earlier. First we are required to define the generic specification.

generic -- 1 Reserved word for defining templates
 type Item is (<>); -- Any discrete type -- 2 Generic formal Parameter (GFP)
function Next (Value : Item) return Item; -- 3 Specification for generic subprogram

We would not be allowed to code a generic specification with an is such as,

generic -- 1 As in line 1, above
 type Item is (<>); -- 2 As in line 2, above
function Next (Value : Item) return Item is -- 3 Illegal; Specification required
 ... -- 4 body of function
end Next; -- 5 before implementation

because any generic subprogram must be first specified as a specification. The specification may actually
be compiled or may be declared in the specification of a package.

Then we code the actual algorithm. Notice that the algorithm does not change at all for the earlier version
of function Next, even though we may now use it for any discrete data type.

function Next (Value : Item) return Item is -- 1 Item is a generic formal parameter
begin -- 2 No local declarations for this function
 if Item’Succ(Value) = Item’Last then -- 3 A good use of attribute; see ALRM K/104
 return Item’First; -- 4 ALRM 6.3
 else -- 5 ALRM 5.3
 return Item’Succ(Value); -- 6 Note two returns; may not be good idea
 end if; -- 7 ALRM 5.3
end Next; -- 8 Always include the function identifier

This function can be instantiated for any discrete data type. Given the following types, write a few little
procedures to cycle through the types,

type Month is (January, Februrary, March, April, May, June, July, August, September, October, November, December);
type Color is (Red, Orange, Yellow, Green, Blue, Indigo, Violet) ; -- our friend, Roy G. Biv.
type Day is (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday);
type Priority is (Very_Low, Low, Sorta_Medium, Medium, Getting_Higher, High, Very_High, The_Very_Top);

The next generic subprogram is the famous, but simple Swap procedure. Recall that every non-limited
type including a private type has the predefined operators, =, /=, and operation := (assignment). Therefore,
we can instantiate the Swap procedure with any non-limited type in Ada. That is, a private generic formal
parameter, as defined on line 2 below, can be associated with any non-limited type

generic -- 1 Start the generic formal parameters
 type Element (<>) is private; -- 2 Unconstrained generic parameter
procedure Swap (Left, Right : in out Element) ; -- 3 Usually compiled separately

First we code the the specification then the actual implementation. Notice the algorithm in the
implementation works for any non-limited data type.

Illegal

Ada Distilled by Richard Riehle

 Page 79 of 117

procedure Swap (Left, Right : in out Element) is -- 1 Compile separately in its own body file
 Temp : Element := Left; -- 2 Must be constrained in declaration
begin -- 3
 Left := Right; -- 4 First part of exchange
 Right := Temp; -- 5 Second part of exchange
end Swap; -- 6

An algorithm does not get much easier than the Swap procedure. What should be clear from seeing
generic Swap is that you can use this technique to generalize hundreds of other algorithms on your own
projects. You can also use this technique to easily share algorithmic code with your colleagues.

Sometimes it is useful to collect generic subprogram specifications some common properties in one
package. For example, using those already described,

package Utilities is -- A handy package at the project-specific level
 generic
 type Item is private; -- A constrained generic formal parameter
 procedure Swap(L, R : in out Item);

 generic
 type Item is (<>); -- A discrete type generic formal parameter
 function Next (Data : Item) return Item;

 generic
 type Item is (<>); -- A discrete type generic formal parameter
 function Prev (Data : Item) return Item;
 -- more generic subprograms as appropriate to your particular project needs

end Utilities;

Use Utilities package to collect common generic algorithms. Build new generics from existing generics.

12.2 Other Generic Formal Parameters

A generic formal type parameter is possible for any type; e.g., access types, derived types, array types, and
even limited types. For limited types, the designer must include a corresponding set of generic formal
operations. Even for other types, generic formal operations are often useful. Consider this private type.

generic -- Start the generic formal parameters
 type Item is private; -- Predefined assignment and equality -- Generic formal type parameter
 with function ">" (L, R : Item) return Boolean; -- Generic formal ">" operator
 with function "<" (L, R : Item) return Boolean; -- Generic formal "<" operator
package Doubly_Linked_Ring_1 is -- Generic reusable data structure
 -- Specification of a Doubly_Linked_Ring data strructure --
end Doubly_Linked_Ring_1; --

Doubly_Linked_Ring_1 requires some operations beyond simple test for equality. Only := and = are
predefined for a private type. We may include parameters for other operators. These "own code"
operators are instantiated by the client of the package. Before looking at the instantiation of this example,
study the following example that is preferred by many designers of resuable generic data structure
components.

generic -- 1 start a generic package specification
 type Item is private; -- 2 Predefined assignment and equality
 type Item_Reference is access all Item; -- 3 general access type formal parameter
 with function Is_Equal (L, R : Item) return Boolean; -- 4 formal parameter for own code "="
 with function Is_Less_Than (L, R : Item) return Boolean; -- 5 formal parameter for own code "<"
 with function Is_Greater_Than (L, R : Item) return Boolean; -- 6 formal paramter for own code ">"
package Doubly_Linked_Ring_2 is -- 7 Generic reusable data structure
 type Ring is limited private; -- 8 limited private type for container
 -- Specification of a Doubly_Linked_Ring data strructure -- 9 more operations on limited type

Many Ada designers
prefer to use function
names instead of
function operators for
generic formal
subprogram
parameters.

Tip:
You can create
this kind of
utility package
for algorithms
unique to your
team's project.

Ada Distilled by Richard Riehle

 Page 80 of 117

end Doubly_Linked_Ring_2; -- 10 end of package specification

Although test for equality is predefined for a private type, the test is on the binary value of the data not on
its selected components. If the actual parameter is a record or constrained array, a pure binary comparison
may not give the intended result. Instead, by associating a generic actual operation with a generic formal
operation, the client of the generic package can ensure the structure behaves according to a given record
key definition. Also, by including an access type for the generic formal private type, the client may have
lists of lists, trees of queues, lists of rings, etc. This example instantiates the Doubly_Linked_Ring_2.

with Doubly_Linked_Ring_2 ;
procedure Test_Doubly_Linked_Ring_2 is
 type Stock is record
 Stock_Key : Positive;
 Description : String (1..20);
 end record;
 type Stock_Reference is access all Stock;
 function Is_Equal (L, R : Stock) return Boolean is
 begin
 return L.Key = R.Key;
 end Is_Equal;
 function ">" ... -- Overload ">" Implement using the same rules as in function Is_Equal, above
 function "<" ...
 package Stockkeeper is new Doubly_Linked_Ring_2(Item => Stock,
 Item_Reference => Stock_Reference,
 Is_Equal => Is_Equal,
 Is_Less_Than => "<",
 Is_Greater_Than => ">");
 The Ring : Stockkeeper.Ring;
 The_Data : Stock;
begin
 -- Insert and remove stuff from the Ring
end Test_Doubly_Linked_Ring_2;

Sometimes it is convenient to combine a set of generic formal parameters into a signature package. A
signature package can be reused over and over to instantiate many different kinds of other generic
packages. A signature package will often have nothing in it except the generic parameters. It must be
instantiated before it can be used. This is an advanced topic. Here is one small oversimplified example,
derived and extended into a fully coded program, adapted from the Ada 95 Language Rationale.

package Mapping_Example is -- Begin the enclosing package specification -- 1
 generic -- 2
 type Mapping_Type is private; -- 3
 type Key is limited private; -- 4
 type Value is limited private; -- 5
 with procedure Add (M : in out Mapping_Type; K : in Key; V : in Value); -- 6
 with procedure Remove (M : in out Mapping_Type; K : in Key; V : in Value); -- 7
 with procedure Apply (M : in out Mapping_Type; K : in Key; V : in Value); -- 8
 package Mapping is end Mapping; -- 9 Signature package
 -- Now declare the specification for the generic procedure in the same package -- 9.1
 generic -- 10
 with package Mapping_Operations is new Mapping (<>); -- 11 See line 9, above
 use Mapping_Operations; -- 12 Use clause OK here
 -- This is a generic formal package parameter instead of a generic formal subprogram -- 13
 procedure Do_Something(M : in out Mapping_Type; K : in Key; V : in Value); -- 14 Generic procedure

 end Mapping_Example; -- End of the enclosing package specification -- 15

Lines 2 through 9 define the generic formal signature that will become our generic formal pacakage
parameter for the Do_Something procedure. This model has no specification and therefore will not have a

Note the generic
formal parameters
for the signature
package, Mapping.
The package
contains no other
operations. This is
legal and handy

The Key is only one field of the record.

Compare only the record Key, not the whole record.

Notice the use of
named association;
good for readability
and documentation

Ada Distilled by Richard Riehle

 Page 81 of 117

body. It is typical of a generic formal signature to be a set of parameters for later instantiation. The code
on Line 11 is the syntax for a generic formal package parameter. The parenthetical box (<>) may have the
formal parameters associated with actual parameters if any are visible at this point.

The code beginning on Line 13 is a generic procedure declaration. By making it a simple procedure with
its own formal parameters we keep this example simple. The package body for Mapping_Example will
simply implement the procedure Do_Something.

package body Mapping_Example is -- 1 Implementation of the
 procedure Do_Something(M : in out Mapping_Type; -- 2 generic formal program
 K : in Key; -- 3
 V : in Value) is -- 4
 begin -- Do_Something -- 5
 Mapping_Operations.Add(M, K, V); -- 6
 end Do_Something; -- 7
end Mapping_Example; -- 8

The comment the begin statement on Line 5 to emphasizes that it belongs to Do_Something. The call on
Line 6 is to the Add procedure in the generic formal parameter list for Mapping_Operations. Dot notation
makes clear the referencing of the formal parameter name, not the “is new” name. Here is an example of
how to instantiate the units in Mapping_Example:

with Mapping_Example; -- 1
procedure Test_Mapping_Example is -- 2
 Map_Key : Integer := 0; -- 3
 Map_Data : Character := 'A'; -- 4
 Map_Value : Integer := Map_Key; -- 5
 procedure Add (M : in out Character; K : Integer; V : Integer) is -- 6
 begin -- 7
 null; -- Stubbed out; usually is the algorithmic part of the code -- 8
 end Add; -- 9
 procedure Remove (M : in out Character; K : Integer; V : Integer) is -- 10
 begin -- 11
 null; -- Stubbed out; usually is the algorithmic part of the code -- 12
 end Remove; -- 13
 procedure Apply (M : in out Character; K : Integer; V : Integer) is -- 14
 begin -- 15
 null; -- Stubbed out; usually is the algorithmic part of the code -- 16
 end Apply; -- 17

 -- 18

 package Character_Mapping is new Mapping_Example.Mapping -- 19

 (Mapping_Type => Character, -- 20
 Key => Integer, -- 21
 Value => Integer, -- 22
 Add => Add, -- 23
 Remove => Remove, -- 24
 Apply => Apply); -- 25

 procedure Do_Something_To_Map -- 26

 is new Mapping_Example.Do_Something -- 27
 (Mapping_Operations => Character_Mapping); -- 28
begin -- 29
 Do_Something_To_Map(M => Map_Data, -- 30
 K => Map_Key, -- 31
 V => Map_Value); -- 32
end Test_Mapping_Example; -- 33

Implementation
of procedures
intended to be
used as generic
formal
subprogram
parameters.

Instantiation of
the signature
package using
generic actual
parameters.

Instantiation of
generic package
associating the
generic formal
package
parameter with
generic actual
from lines 19-25.

Ada Distilled by Richard Riehle

 Page 82 of 117

12.3 Longer Generic Code Example

Just as you can create simple generic subprograms, as shown above, you can also generalize entire
packages. This book has some examples of how to do this. Here is an example of a generic container
package which corresponds to some of the the generic packages you will see when programming with Ada.

This package is a managed FIFO Queue_Manager which includes an iterator. A managed data structure
is one which includes some kind of automatic garbage collection. An iterator is a mechanism by which
you may non-destructively visit every node of a data structure. There are two fundamental kinds of
iterators, active and passive. A passive iterator is somewhat safer than an active iterator. Also, a passive
iterator requires less work from the client. We show a package with an active iterator.

with Ada.Finalization; -- 1
use Ada; -- 2 Make package Ada visible
generic -- 3
 type Element is tagged private; -- A more robust design might derive Element -- 4
 -- from Ada.Finalization.Controlled -- 5
 with function Is_Valid(Data : Element) return Boolean; -- 6
package Queue_Manager_1 is -- 7
 type List is limited private; -- 8 No assignment possible
 type List_Reference is access all List; -- 9 We can assign access values
 type List_Item is new Element with private; -- 10 Inherits from Element
 type Item_Reference is access all List_Item'Class; -- 11 Classwide access type
 -- A classwide access type permitting a heterogenuous queue -- 12
 procedure Clear (L : in out List); -- 13 Empties the list
 procedure Insert_At_Head (L : in out List; I : in List_Item'Class); -- 14 Self-documenting Method
 procedure Insert_At_Head (L : access List; I : access List_Item'Class); -- 15
 -- A more complete design would include added options for the Insert operation -- 16
 procedure Copy (Source : in List; Target : in out List); -- 17
 function Remove_From_Tail (L : access List) return List_Item'Class; -- 18 Self-documenting Method
 -- A more complete design would include added options for the Remove operation -- 19
 function "=" (L, R : List) return Boolean; -- 20 Overload Equality Test
 function Node_Count (L : access List) return Natural; -- 21 Self-documenting Query
 function Is_Empty (L : access List) return Boolean; -- 22 Self-documenting Query
-- =============== Define the Active Iterator ===================== -- 23
 type Iterator is private; -- 24
 procedure Initialize_Iterator(This : in out Iterator; The_List : access List); -- 25
 function Next(This : in Iterator) return Iterator; -- 26
 function Get (This : in Iterator) return List_Item'Class; -- 27
 function Get (This : in Iterator) return Item_Reference; -- 28
 function Is_Done(This : in Iterator) return Boolean; -- 29
 -- 30
 Iterator_Error : exception; -- 31
private -- 32
 use Ada.Finalization; -- 33 Use clause OK here
 type List_Node; -- 34 Incomplete type definition
 type Link is access all List_Node; -- 35 Reference to List_Node
 type Iterator is new Link; -- 36 Derive Iterator from Link
 type List_Item is new Element with null record; -- 37 Empty tagged record
 type List_Node is new Controlled with -- Derived from a controlled type -- 38 Define a List_Node
 record -- 39
 Data : Item_Reference; -- 40 Item is a pointer
 Next : Link; -- 41 List_Node pointer
 Prev : Link; -- 42 List_Node pointer
 end record; -- 43
 type List is new Limited_Controlled with -- Derived from limited controlled type -- 44
 record -- 45
 Count : Natural := 0; -- 46
 Head : Link; -- 47 List_Node pointer
 Tail : Link; -- 48 List_Node pointer
 Current : Link; -- 49 List_Node pointer
 end record; -- 50
 procedure Finalize(One_Node : in out List_Node); -- 51 reclaim Node storage
 procedure Finalize(The_List : in out List); -- 52 reclaim List storage
end Queue_Manager_1; -- 53

Ada Distilled by Richard Riehle

 Page 83 of 117

An active iterator would require the client to write a loop which successively calls the Next function
followed by a Get function. An active iterator is not quite as safe as a passive iterator, but it can be an
effective building block for contructing passive iterators. Since the list is potentially heterogenuous, the
Get returns a classwide type. This can be used in conjuction with dispatching operations. Here is an
annotated package body for the above specification. This is a long set of source code but it should be
useful to the student because of its near completeness. It also serves as a model for creating other data
structures. This package body was compiled using the GNAT Ada compiler.

with Text_IO; -- 1
with Ada.Exceptions; -- 2
with Unchecked_Deallocation; -- 3
package body Queue_Manager_1 is -- 4
 -- This instantiation enables destruction of unreferenced allocated storage -- 5
 procedure Free_Node is new Unchecked_Deallocation -- 6
 (Object => List_Node, -- 7
 Name => Link); -- 8

 -- This instantiation enables destruction of unreferenced Data items -- 9
 procedure Free_Item is new Unchecked_Deallocation -- 10
 (Object => List_Item'Class, -- 11
 Name => Item_Reference); -- 12

 -- We override Ada.Finalizaion for a single node -- 13
 procedure Finalize(One_Node : in out List_Node) is -- 14
 begin -- 15
 Free_Item (One_Node.Data); -- 16
 Free_Node (One_Node.Next); -- 17
 end Finalize; -- 18

 -- When the list goes out of scope, this is called to clean up the storage -- 19
 procedure Finalize(The_List : in out List) is -- 20
 begin -- 21
 -- Use the Iterator to traverse the list and call Free_Item; add this code yourself -- 22
 Free_Node (The_List.Current); -- 23
 Free_Node (The_List.Tail); -- 24
 Free_Node (The_List.Head); -- 25
 end Finalize; -- 26

 -- The name says what it does. Note the allocation of a temp. Finalization will -- 27
 -- occur to ensure there is no left over storage. -- 28
 procedure Insert_At_Head (L : in out List; -- 29
 I : in List_Item'Class) is -- 30
 Temp_Item : Item := new List_Item'(I); -- 31
 Temp : Link := new List_Node'(Controlled with -- 32
 Data => Temp_Item, -- 33
 Next => null, -- 34
 Prev => null); -- 35
 begin -- 36
 if Is_Empty(L'Access) -- 37
 then -- 38
 L.Head := Temp; -- 39
 L.Tail := Temp; -- 40
 else -- 41
 L.Head.Prev := Temp; -- 42
 Temp.Next := L.Head; -- 43
 L.Head := Temp; -- 44
 end if; -- 45
 L.Count := L.Count + 1; -- 46
 end Insert_At_Head; -- 47

 -- This is implemented in terms of the non-access version. Simply makes it convenient -- 48
 -- to call this with access to object values, general or storage-pool access values. -- 49
 procedure Insert_At_Head (L : access List; -- 50
 I : access List_Item'Class) is -- 51
 begin -- 52
 Insert_At_Head(L => L.all, -- 53
 I => I.all); -- 54
 end Insert_At_Head; -- 55

package
body

Ada Distilled by Richard Riehle

 Page 84 of 117

 -- We implement this as a function instead of a procedure with in out modes -- 56
 -- because this can be used in an expression to constrain a classwide variable -- 57
 -- For example, X : List_Item’Class := Remove(L); -- 58
 function Remove_From_Tail (L : access List) -- 59
 return List_Item'Class is -- 60
 Result : Item := L.Tail.Data; -- 61
 begin -- 62
 L.Tail := L.Tail.Prev; -- 63
 L.Count := L.Count - 1; -- 64
 Free_Item(L.Tail.Next.Data); -- 65
 Free_Node(L.Tail.Next); -- 66
 return Result.all; -- 67
 end Remove_From_Tail; -- 68

 -- You might want a more robust “=“. For example, it might be better to traverse -- 69
 -- each list, node by node, to ensure that each element is the same. -- 70
 function "=" (L, R : List) return Boolean is -- 71
 begin -- 72
 return L.Count = R.Count; -- 73
 end "="; -- 74

 -- The name says it. Simply returns how many nodes in this list. -- 75
 function Node_Count (L : access List) return Natural is -- 76
 begin -- 77
 return L.Count; -- 78
 end Node_Count; -- 79

 -- This will not be correct unless you keep careful count of the inserted and deleted nodes. -- 80
 function Is_Empty(L : access List) return Boolean is -- 81
 begin -- 82
 return L.Count = 0; -- 83
 end Is_Empty; -- 84

 -- We made List a limited private to prevent automatic assignment. Instead, we design -- 85
 -- this “deep copy” procedure to ensure there will be two separate copies of the data -- 86
 procedure Copy (Source : in List; -- 87
 Target : in out List) is -- 88
 type Item_Ref is access all List_Item'Class; -- 89
 Temp : Link := Source.Tail; -- 90
 Local_Data : Item_Reference; -- 91
 begin -- 92
 Clear(Target); -- Be sure the target is initialized before copying. -- 93
 loop -- 94
 exit when Temp = null; -- 95
 Local_Data := new List_Item'(Temp.Data.all); -- 96
 declare -- 97
 Local_List_Item -- 98
 : List_Item'Class := Local_Data.all; -- 99
 begin -- 100
 Insert_At_Head(Target, Local_List_Item); -- 101
 end; -- 102
 Temp := Temp.Prev; -- 103
 end loop; -- 104
 end Copy; -- 105

 -- This is pretty simple. It is also an important part of the overall design. -- 106
 procedure Clear (L : in out List) is -- 107
 begin -- 108
 L.Head := null; -- 109
 L.Tail := null; -- 110
 L.Current := null; -- 111
 L.Count := 0; -- 112
 end Clear; -- 113

 procedure Initialize_Iterator(This : in out Iterator; -- 114
 The_List : access List) is -- 115
 begin -- 116
 This := Iterator(The_List.Head); -- 117
 end Initialize_Iterator; -- 118

 function Next(This : access Iterator) return Iterator is -- 119

Also need to free data storage in this routine

Ada Distilled by Richard Riehle

 Page 85 of 117

 begin -- 120
 return Next(This.all); -- 121
 end Next; -- 122

 function Next (This : Iterator) return Iterator is -- 123
 begin -- 124
 return Iterator(This.Next); -- 125
 end Next; -- 126

 function Get (This : in Iterator) -- 127
 return List_Item'Class is -- 128
 begin -- 129
 return This.Data.all; -- 130
 end Get; -- 131

 function Get (This : in Iterator) return Item_Reference is -- 132
 begin -- 133
 return This.Data; -- 134
 end Get; -- 135

 function Is_Done(This : in Iterator) return Boolean is -- 136
 begin -- 137
 return This = null; -- 138
 end Is_Done; -- 139

 function Is_Done(This : access Iterator) -- 140
 return Boolean is -- 141
 begin -- 142
 return Is_Done(This.all); -- 143
 end Is_Done; -- 144
end Queue_Manager_1; -- 145

12.3 Generics and Software Reuse

Be sure to let the others on your project know about generic components you might design. Watch for
opportunities during design and code walkthroughs to promote code that is specific to one type into a
generic component. This is a project manager's responsibility.

Don't write code that already exists in libraries. Most data structures and common algorithms are already
written and residing in component repositories. Some of those repositories are commercial. Others are
open source and free. For military systems, there are libraries of classified components that can be helpful
in building weapon systems.

One strategy is to define, at the beginning of the project, what kinds of components are likely to be needed.
Select a dozen or so of these from existing libraries. Require that everyone on the project, during the early
stages of development, use the same generic linked-list, sort routine, etc. This will help you produce a
working solution early. Later, if there is a need for refinement, you can search for components that more
closely accomplish your needs.

Ada Distilled for Ada 2005 by Richard Riehle

 Page 86 of 117

13. New Names from Old Ones

Renaming is sometimes controversial. Some people like it. Others hate it. The important things to
understand are:

1. Renaming does not create new data space. It simply provides compiler with a new name for an existing entity.

2. Don't rename same item over and over with new names; you will confuse colleagues -- and yourself.

3. Use renaming to simplify your code. A new name can sometimes make the code easier to read.

13.1 Making a Long Name Shorter

This section demonstrates some useful ideas such as renaming long package names, commenting the begin
statement, getting a line of data from a terminal using Get_Line, and catenating two strings. Also, note that
a string may be initialized to all spaces using the others => aggregate notation.

with Text_IO, Ada.Integer_Text_IO; -- 1 Put Text_IO library unit in scope; A.10.8/21
procedure Gun_Aydin is -- 2 "Good morning" in Turkish; 6.1
 package TIO renames Text_IO; -- 3 Shorten a long name with renaming; 8.5.3
 package IIO renames Ada.Integer_Text_IO; -- 4 Shorter name is same as full name to compiler; 8.5.3
 Text_Data : String (1..80) := (others => ‘ ‘); -- 5 others => ‘ ‘ iniitalizes string to spaces; 4.3.3
 Len : Natural; -- 4 To be used as parameter in Get_Line; A.10.7
begin -- Hello_2 -- 6 Good idea to comment every begin statement; 2.7/2
 TIO.Put(“Enter Data: “); -- 7 Put a string prompt with no carriage return; A.10
 TIO.Get_Line(Text_Data, Len); -- 8 After cursor, get a line of text with its length; A.10
 IIO.Put (Len); -- 9 Convert number to text and print it; A.10 and line 4
 TIO.Put_Line(“ “ & Text_Data(1..Len)); -- 10 Put catenated string with carriage return; 4.4.1
end Gun_Aydin; -- 11 end Label same as procedure name; 6.3

13.2 Renaming an Operator ALRM 8.5

Sometimes an operator for a type declared in a with'ed package is in scope but not visible . The rules of
Ada require that no entity in scope is directly visible to a client until it is explicitly made visible. An
operator is one of the symbol-based operations such as "+", "/", ">", or "=". A use clause makes
operators directly visible, but a use clause also makes too many other entities directly visible. You can
selectively makeoperators visible through renaming as shown on lines 6 and 8 below.

Renaming makes a specific operator visible without making all other operators visible. In the following
procedure, which draws a text-based diamond on the screen, we rename the packages to make their names
shorter and rename the “+” and “-” operators for Text_IO.Count to make them explicitly visible.

with ada.text_io; -- 1 A.10; context clause.
with ada.integer_text_Io; -- 2 A.10.8/21
procedure diamond1 is -- 3 Parameterless procedure
 package TIO renames ada.text_io; -- 4 Rename a library unit; 8.5.3
 package IIO renames ada.integer_text_io; -- 5 Renames; 8.5.3
 function "+" (L, R : TIO.Count) return TIO.Count -- 6 Rename Operator; 8.5.4
 renames TIO."+"; -- 7 Makes the operators directly
 function "-" (L, R : TIO.Count) return TIO.Count -- 8 visible for "+" and "-" to avoid
 renames TIO."-"; -- 9 the need for a "use" clause.
 Center : constant TIO.Count := 37; -- 10 type-specific constant; named number
 Left_Col, Right_Col : TIO.Count := Center; -- 11 type-specific variables
 Symbol : constant Character := 'X'; -- 12 a character type constant
 Spacing : TIO.Count := 1; -- 13 Local variables for counting
 Increment : TIO.Count := 2; -- 14 Initialize the variable
begin -- Diamond1 -- 15 Always declare comment at begin
 TIO.Set_Col(Center); -- 16 Set the column on the screen

Ada Distilled by Richard Riehle

 Page 87 of 117

 TIO.Put(Symbol); -- 17 Put a single character to video display
 for I in 1..8 loop -- 18 begin a for loop with constants
 TIO.New_Line(Spacing); -- 19 Advance one line at a time
 Left_Col := Left_Col - Increment; -- 20 See lines 8 & 9, above
 Right_Col := Right_Col + Increment; -- 21 Data type and operator visibility
 TIO.Set_Col(Left_Col); -- 22
 TIO.Put(Symbol); -- 23
 TIO.Set_Col(Right_Col); -- 24
 TIO.Put(Symbol); -- 25
 end loop; -- 26
 for I in 9..15 loop -- 27
 TIO.New_Line(Spacing); -- 28
 Left_Col := Left_Col + Increment; -- 29 Increment the Left Column by 1
 Right_Col := Right_Col - Increment; -- 30 Increment the Right Column by 1
 TIO.Set_Col(Left_Col); -- 31 Set the column
 TIO.Put(Symbol); -- 32 Print the symbol
 TIO.Set_Col(Right_Col); -- 33 Set the column
 TIO.Put(Symbol); -- 34 Print the symbol
 end loop; -- 35 Loop requires an end loop
 TIO.Set_Col(Center); -- 36 Set the column for final character output
 TIO.Put(Symbol); -- 37 The last character for the diamond
end Diamond1; -- 38 End of scope and declarative region

Always plan ahead to ease operator usage through careful package design. In the following example, the
operators are renamed in a nested package which can be made visible with a use clause.

package Nested is -- 1 Package specification
 type T1 is private; -- this is called a partial view of the type -- 2 Only =, /=, and :=
 type Status is (Off, Low, Medium, High, Ultra_High, Dangerous); -- 3 Enumerated type; full set
 -- operations on T1 and Status -- 4 of infix operators is available
 package Operators is -- 5 A nested package specification
 function “>=“ (L, R : Status) return Boolean -- 6 Profile for a function and
 renames Nested.”>=“; -- 7 renames for the >= operator
 function “=“ (L, R : Status) return Boolean -- 8 Profile for an = function and
 renames Nested.” =“; -- 9 renames of the = operator
 end Operators; -- 10 Nested specifcation requires end
private -- 11 Private part of package
 type T1 is ... -- 12 Full definition of type from line 2
end Nested; -- 13 Always include the identifier

The above package can be accessed via a “with Nested;” context clause followed by a “use
Nested.Operators;” to make the comparison operators explicitly visible. Not everyone will approve of this
approach, but it has been employed in many Ada designs to simplify the use of infix operators because it
eliminates the need for localized renaming. We caution you to use this technique with discretion.

with Nested; -- 1 Always include the identifier
procedure Test_Nested is -- 2 A simple procedure body
 use Nested.Operators; -- 3 Use clause for nested package
 X, Y : Nested.Status := Nested.Status'First; -- 4 Declare some Status objects
begin -- Test_Nested -- 5 Always include Identifier
 -- Get some values for X, and Y -- 6 This code is commented
 if X = Nested.Status'Last then -- 7 = is made directly visible at line 3
 -- Some statements here -- 8
 end if; -- 9 Of course. End if required
end Test_Nested; --10 Always use identifier with end

The code just shown illustrates a technique for letting the client make the selected operators directly visible
via a use clause on the nested package specification. I prefer this solution to use type (ALRM 8.4/4)
because it only makes a restricted set of operators visible. The downside of this is that it requires the
designer to think ahead. Thinking ahead is all too rare for package designers.

Could also be
designed as a
child package

Ada Distilled by Richard Riehle

 Page 88 of 117

13.3 Renaming an Exception

Sometimes it is useful to rename an exception locally to where it will be used. For example,

 with Ada.IO_Exceptions;
 package My_IO is
 -- various IO services
 -- Data_Error : exception renames Ada.IO_Exceptions.Data_Error;
 ...
 end My_IO;

13.4 Renaming a Component

One of the most frequently overlooked features of Ada renaming is the option of giving a component of a
composite type its own name.

with Ada.Text_IO;
package Rename_A_Variable is

 -- various IO services
 -- Record_Count : renames Ada.Text_IO.Count;
 ...
 end Rename_A_Variable;

13.4.1 Renaming an Array Slice

Suppose you have the following string,

Name : String(1..60); -- A String is a special kind of array that must be constrained

where 1..30 is the last name, 31..59 is the first name and 60 is the middle initial. You could do the
following.

declare
 Last : String renames Name(1..30);
 First : String renames Name(31.29);
 Middle : String renames Name(60.60);
begin
 Ada.Text_IO.Put_Line(Last);
 Ada.Text_IO.Put_Line(First);
 Ada.Text_IO.Put_Line(Middle);
end;

where each Put_Line references a named object instead of a range of indices. Notice that the object still
holds the same indices. Also, the renamed range constrains the named object. No new space is declared.
The renaming simply gives a new name for existing data.

13.4.2 Renaming a Record Component

Consider the following definitions,

subtype Number_Symbol is Character range '0'..'9';
subtype Address_Character is Character range Ada.Characters.Latin_1.Space
 .. Ada.Characters.Latin_1.LC_Z;
type Address_Data is array(Positive range <>) of Address_Character;
type Number_Data is array(Positive range <>) of Number_Symbol;

In this example, you can rename slices of
arrays including String arrays. Each slice
will have its own name that can be used in
any statement where that type is legal.

Ada Distilled by Richard Riehle

 Page 89 of 117

type Phone_Number is record
 Country_Code : Number_Data(1..2);
 Area_Code : Number _ Data (1..3);
 Prefix : Number_ Data (1..3);
 Last_Four : Number_ Data (1..4);
end record;
type Address_Record is
 The_Phone : Phone_Number;
 Street_Address_1 : Address_Data(1..30);
 Street_Address_2 : Address_Data(1..20);
 City : Address_Data (1..25);
 State : Address_Data(1..2);
 Zip : Number _ Data (1..5);
 Plus_4 : Number_ Data (1..4);
end record;

One_Address_Record : Address_Record;

Now you can rename an inner component for direct referencing in your program. For example, to rename
the Area_Code in a declare block,

declare
 AC : Number_ Data renames One_Address_Record .The_Phone.Area_Code;
begin
 -- Operations directly on variable AC
end;

The declaration of AC does not create any new data space. Instead, it localizes the name for the
component nested more deeply within the record. If the record had deeply nested components that you
needed in an algorithm, this renaming could be a powerful technique for simplifying the names within that
algorithm.

13.5 Renaming a Library Unit

Suppose you have a package in your library that everyone on the project uses. Further, suppose that
package has a long name. You can with that library unit, rename it, and compile it back into the libaray
with the new name. Anytime you with the new name, it is the same as withing the original.

-- The following code compiles a renamed library unit into the library
with Ada.Generic_Elementary_Functions;
package Elementary_Functions renames Ada.Generic_Elementary_Functions;

with Graphics.Common_Display_Types;
package CDT renames Graphics.Common_Display_Types;

Take care when doing this kind of thing. You don't want to confuse others on the project by making up
new names that no one knows about. Also, renaming can be a problem when the renamed entity is too far
from its original definition or description.

13.6. Renaming an Object or Value

This can be especially troublesome when done too often. I recall a project where the same value was
renamed about seven times throughout a succession of packages. Each new name had meaning within the
context of the new package but was increasingly untraceable the further one got from its original value.

Inner record

Inner record
contained in
outer record

Nested data

Ada Distilled by Richard Riehle

 Page 90 of 117

package Messenger is -- 1 Specification Declaration
 type Message is tagged private; -- 2 Partial definition , tagged type
 type Message_Pointer is access all Message'Class; -- 3 Classwide access type (pointer)
 procedure Create(M : in out Message; -- 4 Operation on the type
 S : in String); -- 5 Second parameter for Operation
 procedure Clear (M : in out Message); -- 6 Clear all fields of the Message
 function Message_Text (M : Message) return String; -- 7 Return the Data of Message
 function Message_Length(M : Message) return Natural; -- 8 Return the Length of Message
private -- 9 Private part of specification
 type String_Pointer is access all String; -- 10 Private pointer declaration
 type Message is tagged record -- 11 Full definition of type Message type
 Data : String_Pointer; -- 12 Component of Message record
 Length : Natural; -- 13 Component of Message record
 end record; -- 14 Ends scope of Message record
end Messenger; -- 15 End scope of specification

13.7. Renaming a Type or Subprogram

The rename option does not apply to a type declaration. However, if you look back at the example of
subtypes elsewhere in this book, you will see that a subtype can be used any place its parent type can
be used. John English, in his JEWL package for Windows development, use this capability in clever
ways.

Professor English first declares certain types using the spelling of his native England and they renames
them for his cousins across the pond. Consider the following examples from JEWL.

Original type declaration
type Colour is ...

Renamed by a subtype declaration;

subtype Color is Color;

Original subprogram declaration.

function Centre return Alignment_Type;

Renamed by a renaming declaration;

function Center return Alignment_Type renames Centre;

13.8. Notes on renaming

Ada developers are cautious about renaming. If the renames is used to localize the effect of an entity, or
clarify the understanding of that entity, it can be a good thing. If the renaming is applied to a global
variable or to some entity at a great distance from its original declaration, readability might be reduced.

Use renaming to improve readability, understandability, and maintainability for the programmer who will
need to update your program after you are finished with it. Array renaming, while often handy, can
introduce confusion for a programmer unaccustomed to it.

Full private
type definition

Ada Distilled by Richard Riehle

 Page 91 of 117

14. Concurrency with Tasking

Ada is unique among general purpose programming languages in its support for concurrency. There are
two models for Ada concurrency: multitasking, and distributed objects. The latter, distributed objects is
beyond the scope of this book. We focus this discussion on multitasking. In Ada this is simply called
tasking. Tasking is implemented using standard Ada language syntax and semantics along with two
additional types: task types and protected types. The syntax and semantics of task types and protected
types is described in Chapter 9 of the Ada Language Reference Manual (ALRM). The semantics are
augmented in Annex D and Annex C of the ALRM.

Each task is a sequential entity that may operate concurrently with, and communicate with, other tasks. A
task object may be either an anonymous type or an object of a task type.

14.1 Fundamental Ideas

Tasks are concurrent active objects. The word active in that sentence is important. An active object is
called a task in Ada. Once it is created and activated a task is in one of two states: executing or
suspended. Ada can support multiple active tasks. In a single processor implementation, only one task
can be executing at any instant. In this environment, other active tasks are suspended. When one active
task begins to execute, all other tasks are suspended. Tasks can be assigned priorities so they can enter
suspended/executing states according to a scheduling algorithm. The underlying Ada Run-time Executive
(it comes with every Ada compiler) has a scheduler that controls tasks according to a scheduling model.
The scheduling model may vary according the the needs of the execution environment.

Tasks may be designed so they communicate with each other. The communication is called a rendezvous.
One task communicates with another by placing requests for rendezvous in the entry queue of the called
task. The calling task goes into a suspended state until the entry (request for rendezvous) in the queue is
consumed and and processed by the called task. The called task does not know its caller.

14.2 A Keyboard Entry Example

Task may be anonymous or instances of task types. The following tasks are anonymous. They are
concurrently active. Only one executes while the others are suspended.

package Set_Of_Tasks is
 task T1; -- 1 object of anonymous task type
 task T2 is -- 2 communicating object
 entry A; -- 3 entry point to task
 entry B; -- 4 entry point to task
 end T2; -- 5 end of task specification
 task T3 is -- 6 communicating task object
 entry X(I : in Character); -- 7 parameterized entry point
 entry Y(I : out Character); -- 8 parameterized entry point
 end T3; -- 9 end of task specification
end Set_Of_Tasks; -- 10 end of package specification

A task has two parts: specification and body. A task may not be a library unit and cannot be compiled by
itself. A task must be declared inside some other library unit. In the example, above, there are three task
specifications within a package specification. The body of each task will be within the body of the
package. For example,

with Ada.Text_IO; -- 1 Context clause
with Ada.Characters.Latin_1; -- 2 For referencing special characters
use Ada; -- 3 Make package Ada visible

Ada Distilled by Richard Riehle

 Page 92 of 117

use Characters; -- 4 Make package Characters visible
package body Set_Of_Tasks is -- 5 Enclosing scope for the task bodies
 task body T1 is -- 6 Implement task T1
 Input : Character; -- 7 Local variable
 Output : Character; -- 8 Local variable
 Column : Positive := 1; -- 9 Could be Text_IO.Positive_Count
 begin -- 10
 loop -- 11
 Text_IO.Get_Immediate (Input); -- 12 Input character with no return key entry
 exit when Input = '~'; -- 13 If the character is a tilde, exit the loop
 T3.X(Input); -- 14 Put entry in queue for T3.X; suspend
 T2.A; -- 15 Put entry in queue for T2.A; suspend
 T2.B; -- 16 Put entry in queue for T2B; suspend
 T3.Y(Output); -- 17 Put entry in queue for T3.Y; suspend
 if Column > 40 then -- 18 No more than 40 characters per line
 Column := 1; -- 19 Start the character count over from 1
 Text_IO.New_Line; -- 20 and then start a new line
 else -- 21
 Column := Column + 1; -- 22 Increment the character per line count
 end if; -- 23
 Text_IO.Set_Col(Text_IO.Positive_Count(Column)); -- 24 Note type conversion here
 Ada.Text_IO.Put(Output); -- 25 Print the character on the screen; echo
 end loop; -- 26
 end T1; -- 27 End of task T1 implementation
 -- 28
 task body T2 is -- 29 Implement body of task T2
 begin -- 30
 loop -- 31
 select -- 32 Select this alternative or terminate when done
 accept A; -- 33 Rendezvous point; corresponds to entry in
 accept B; -- 34 task specification. These are sequential here.
 or -- 35 The alternative to selecting accept A;
 terminate; -- 36 Taken only when nothing can call this anymore
 end select; -- 37
 end loop ; -- 38
 end T2; -- 39
 -- 40
 task body T3 is -- 41 Implement task T3 body
 Temp : Character := Latin_1.Nul; -- 42 Local variable
 begin -- 43
 loop -- 44 Choose rendezvous altenative
 select -- 45 Another selective accept statement
 accept X (I : in Character) do -- 46 Begins critical region for rendezvous
 Temp := I; -- 47 Calling task is suspended until end statement
 end X; -- 48 Rendezvous complete. Caller is not suspended
 or -- 49 or this next altenative
 accept Y (I : out Character) do -- 50 Critical region begins with do statement
 I := Temp; -- 51 Caller is suspended at this point
 Temp := Latin_1.Nul; -- 52 The non-printing nul character
 end Y; -- 53 Rendezvous complete at this point
 or -- 54 or the terminate alternative which will only
 terminate; -- 55 be taken if no other task can call this one
 end select; -- 56 end of scope for the select statement
 end loop; -- 57
 end T3; -- 58
end Set_Of_Tasks; -- 59

We apologize for the length of this example. It does serve to show a lot of interesting issues related to
tasking. You can key it in and it will work. We also suggest you experiment with it by little alterations.

Each task is coded as a loop. Task T1 simply gets a character from the keyboard, sends that character to
T3, gets it back from T3, and prints it to the screen. T3 does nothing with the character, but it could have
more logic for examining the character to see if it is OK. You could modify this program to behave as a
simple data entry application. We recommend you do this as an exercise.

Ada Distilled by Richard Riehle

 Page 93 of 117

Here is a simple little test program you can use with this package.

with Set_Of_Tasks;
procedure Test_Set_Of_Tasks is
begin
 null;
end Test_Set_Of_Tasks;

Some tasks will have one or more entry specifications. In Ada, an entry is unique because it implies an
entry queue. That is, a call to an entry simply places an entry into a queue. An entry call is not a request
for immediate action. If there are already other entries in that queue, the request for action will have to
wait for the entries ahead of it to be consumed. Entries disappear from the queue in one of several ways.
The most common is for them to complete the rendezvous request.

Each task body has a begin statement. Two of the tasks, T2 and T3, have local variables. The accept
statements in the bodies of T2 and T3 correspond to the entry statements in their specifications. A task
body may have more than one accept statement for each entry. When an accept statement includes a do
part, everything up to the end of accept statement is called the critical region. A calling task is suspended
until the critical region is finished for its entry into the task queue.

Now we examine the details of the program example. Each task in this package specification is an
anonymous task. We know this because the word type does not appear in the specification. Task T1 is not
callable because it has no entries. Task T2 is callable, but has no parameters in the entry. T3 is callable
and includes a parameter list in each entry. A call to an entry is simply placemes a request for action in an
entry queue. This is more like message passing than subprogram calling.

The body of this package contains the bodies of the corresponding task specifications. Task body T1 is
implemented as a loop. This is not a good model for task design. In fact, it is a bad design. However, it
does give us an introductory point into understanding. A better design would permit interrupts to occur
and be handled as they occur rather than within the confines of a loop. We show an example of this kind in
the next example.

Line 14 is an entry call to T3.X. It includes a parameter of type Character. This entry call puts a request
for action in the T3.X queue. There are, potentially, other entries already in that queue. The default, in
Ada, is that the entries will be consumed in a FIFO order. This default may be overridden by the designer
when deemed appropriate. At Line 14, Task T1 is suspended while waiting for the completion of its
request for action. Task T1 will resume once that request is completed.

Lines 15 and 16 are do nothing entry calls. We include them in this example for educational purposes, not
because they add anything to the design or performance. If we were to reverse Lines 15 and 16, this
program would deadlock. Each task is a sequential process. The two accept statements in task T2 are
sequential. Entry B cannot be processed until Entry A is processed. This is an important feature of Ada,
and almost all models for communicating sequential processes that operate concurrently.

On line 32 in task T2 and line 45 of task T3, we show the start of a select statement. This construct allows
the task to take a choice of accept alternatives, depending on which entry is called. The accept statements
in task T3 are not sequential. That is, entry X is not dependent on entry Y and entry Y is not dependent on
entry X. The corresponding accept statements may proceed regardless of which is called first.

Lines 36 and 56 have the terminate alternative within a select statement. This alternative will never be
taken unless no other task can call one of the other entries. The Ada run-time will take the terminate path
for every task that has reached the state where it cannot be called, cannot call any other task, and has no
other tasks currently dependent on it. This is a graceful way to for a task to die. There is no need for a
special shutdown entry. Terminate should be used for most service tasks.

The tasks, in package Set_Of_Tasks, will begin
executing as soon as the null statement is
executed. It is not necessary to call the tasks.

Ada Distilled by Richard Riehle

 Page 94 of 117

If you do not understand the mechanisms associated with an entry queue, you will not understand
communicating tasks. It is a rule that, when a task puts an entry into the queue of another task, that entry
remains in the queue until it is consumed or otherwise is removed from the queue. The task that puts the
entry is suspended until the request for action is completed. The calling task may request, as part of the
call, that the request remain in the queue for a limited period, after which it is removed from the queue.

Task T3 cannot identify who called which entry. It cannot purge its own queue. It can determine how
many entries are in each queue. That is, we could have a statement that gets X'Count or Y'Count within
task T3.

Lines 47-48 and 52-53 are the procedural statements within an accept statement. Every statement between
the word do and the corresponding end is in the critical region, mentioned earlier. Statement 47 must
occur before statement 48. Task T1, when it makes a call, T3.Input(...), is suspended until the entire
critical region is finished. T3.Input will consume an entry from its own queue, process that entry in the
critical region, and finish. Once it is finished with the statements in the critical region, task T1 is released
from its suspended state and may continue.

In tasks T2 and T3, the loop serves a slightly different purpose than in task T1. Here the loop is more of a
semantic construct to prevent the task from doing one set of actions and then terminating. That is, the loop
guarantees the task will remain active for as long as it is needed.

14.3 Protecting Shared Data

It has been traditional for a design in which concurrent threads share access to the same resource to use
some kind of Semaphore. Semaphores come in many different varieties. The two most common are the
counting semaphore and the binary semaphore. The latter is sometimes called a Mutex. A Semaphore is a
low-level mechanism that exposes a program to many kinds of potential hazards. Ada uses a different
mechanism, the protected object, which allows the programmer to design encapsulated, self-locking objects
where the data is secure against multiple concurrent updates.

Protected types are a large topic. Therefore, we show only one simple version in this book. The reader is
encouraged to study this in greater depth if they need to develop Ada software using the tasking model.
The following example illustrates all of three operators of a protected object. There a lot of reasons why
you would not want to design a task-based application in exactly the way this one is designed. There are
some inherent inefficiencies in the design but it does illustrate some fundamental ideas you should know.

with Ada.Text_IO; -- 1
procedure Protected_Variable_Example is -- 2
 package TIO renames Ada.Text_IO; -- 3
 task T1; -- 4
 task T2; -- 5
 protected Variable is -- 6 Could have been a type definition
 procedure Modify(Data : Character); -- 7 Object is locked for this operation
 function Query return Character ; -- 8 Read-only. May not update data
 entry Display(Data : Character; T : String); -- 9 An entry has a queue
 private -- 10
 Shared_Data : Character := '0'; -- 11 All data is declared here
 end Variable; -- 12

 protected body Variable is -- 13 No begin end part in protected body
 entry Display(Data : Character; T : String) -- 14 A queue and a required barrier that
 when Display'Count > 0 is -- 15 acts like a pre-condition
 begin -- 16

Although this will work with
Text_IO, it is not a good idea to use
protected types with Text_IO in this
way. We do this only for
pedagogical purposes.

Ada Distilled by Richard Riehle

 Page 95 of 117

 TIO.Put(T & " "); -- 17
 TIO.Put(Data); -- 18
 TIO.New_Line; -- 19
 end Display; -- 20
 procedure Modify (Data : Character) is -- 21
 begin -- 22
 Shared_Data := Data; -- 23
 end Modify; -- 24
 function Query return Character is -- 25
 begin -- 26
 return Shared_Data; -- 27
 end Query; -- 28
 end Variable; -- 29
 task body T1 is -- 30
 Local : Character := 'a'; -- 31
 Output : Character; -- 32
 begin -- 33
 loop -- 34
 TIO.Get_Immediate(Local); -- 35
 exit when Local not in '0'..'z'; -- 36
 Variable.Modify(Local); -- 37
 Output := Variable.Query; -- 38
 Variable.Display(Output, "T1 "); -- 39
 end loop; -- 40
 end T1; -- 41
 task body T2 is -- 42
 Local : Character :='a'; -- 43
 Output : Character; -- 44
 begin -- 45
 loop -- 46
 TIO.Get_Immediate(Local); -- 47
 exit when Local not in '0'..'z'; -- 48
 Variable.Modify(Local); -- 49
 Output := Variable.Query; -- 50
 Variable.Display(Output, "T2 "); -- 51
 end loop; -- 52
 end T2; -- 53
begin -- 54
 null; -- 55
end Protected_Variable_Example; -- 56

Every operation in a protected object is performed in mutual exclusion. The object is locked for update
only during the modification operations. It is locked for read only during query operations. It is
impossible for both update and query to occur at the same time. A function is read-only. During function
calls, the object is locked for read-only. An entry, as with a task, has a queue. Every entry is controlled
by a boolean pre-condition that must be satisfied before it can be entered.

Think of the difference between a semaphore and a protected type in terms of an airplane lavatory. If you
were to enter the lavatory and depend on the flight attendendant to set the lock when you enter and remove
the lock to let you out, that would be analogous to a semaphore. In a protected type, once you enter the
lavatory, you set the lock yourself. Once you are finished with your business in the lavatory, you unlock it
yourself, and it is now free for someone else to use. A protected object knows when it is finished with its
work and can unlock itself so another client can enter.

When a procedure is executed, the object is locked
for update only. It is performed in mutual exclusion.
No other updates can be performed at the same time.
Any other calls to modify must wait for it to be the
protected object to be unlocked.

The object is locked for read-only. No updates can
be performed. A function is not allowed to update
the encapsulated data.

It does not matter how many tasks are trying to
update the data. Only one can do so at any time.
This task, and its corresponding task will update
the protected variable in mutual exclusion.

Ada Distilled for Ada 2005 by Richard Riehle

 Page 96 of 117

A. Annexes, Appendices and Standard Libraries

Reserved Word List

abort case for new raise tagged
abs constant function not range task
abstract null record terminate
accept declare generic rem then
access delay goto of renames type
aliased delta or requeue
all digits if others return until
and do in out reverse use
array is overriding
 interface
at else package select when
 elsif limited pragma separate while
begin end loop private subtype with
body entry procedure synchronize
 exit mod protected xor

A.1 Package Standard

package Standard is -- This package is always visible and never needs a with clause or use clause
 pragma Pure(Standard);
 type Boolean is (False, True); -- An enumerated type; and ordered set; False is less than True
 -- The predefined relational operators for this type are as follows:
 -- function "=" (Left, Right : Boolean) return Boolean;
 -- function "/=" (Left, Right : Boolean) return Boolean;
 -- function "<" (Left, Right : Boolean) return Boolean;
 -- function "<=" (Left, Right : Boolean) return Boolean;
 -- function ">" (Left, Right : Boolean) return Boolean;
 -- function ">=" (Left, Right : Boolean) return Boolean;

 -- The predefined logical operators and the predefined logical
 -- negation operator are as follows:
 -- function "and" (Left, Right : Boolean) return Boolean;
 -- function "or" (Left, Right : Boolean) return Boolean;
 -- function "xor" (Left, Right : Boolean) return Boolean;
 -- function "not" (Right : Boolean) return Boolean;

 -- The integer type root_integer is predefined; The corresponding universal type is universal_integer.
 type Integer is range implementation-defined;
 subtype Natural is Integer range 0 .. Integer'Last;
 subtype Positive is Integer range 1 .. Integer'Last;
 -- The predefined operators for type Integer are as follows:

 -- function "=" (Left, Right : Integer'Base) return Boolean;
 -- function "/=" (Left, Right : Integer'Base) return Boolean;
 -- function "<" (Left, Right : Integer'Base) return Boolean;
 -- function "<=" (Left, Right : Integer'Base) return Boolean;
 -- function ">" (Left, Right : Integer'Base) return Boolean;
 -- function ">=" (Left, Right : Integer'Base) return Boolean;

 -- function "+" (Right : Integer'Base) return Integer'Base;
 -- function "–" (Right : Integer'Base) return Integer'Base;
 -- function "abs" (Right : Integer'Base) return Integer'Base;
 -- function "+" (Left, Right : Integer'Base) return Integer'Base;
 -- function "–" (Left, Right : Integer'Base) return Integer'Base;
 -- function "*" (Left, Right : Integer'Base) return Integer'Base;
 -- function "/" (Left, Right : Integer'Base) return Integer'Base;

Every language has reserved words,
sometimes called keywords. Notice that,
among Ada’s 69 reserved words, there are
no explicit data types. Instead, pre-defined
types are declared in package Standard.

Sometimes people will try to evaluate a
language by counting the number of
reserved words. This is a silly metric and
the intelligent student will select more
substantive criteria.

Some Ada reserved words are overloaded
with more than one meaning, depending on
context. The compiler will not let you make
a mistake in the use of a reserved word.

Package Standard is the implied
parent of every other Ada package.
It does not need a with clause or a
use clause. Every element of
package Standard is always visible
to every part of every Ada
program.

This package defines the types,
Integer, Boolean, Float, Character,
String, Duration. It also defines
two subtypes, Natural and Positive.

All numeric types are
implementation dependent.
Therefore, do not use predefined
numeric types in your Ada
program designs. Instead, define
your own numeric types with
problem-based constraints.

Note: Parameter and return types
are Integer'Base rather than Integer.

package Standard is always in scope. Every entity is directly visible to every part of an Ada
program. Think of it as the root parent of every other package in any Ada program.

The reserved words in blue are for concurrency and tasking. Be careful when using the words in red.
Words in green are new to Ada 2005

Ada Distilled by Richard Riehle

 Page 97 of 117

 -- function "rem" (Left, Right : Integer'Base) return Integer'Base;
 -- function "mod" (Left, Right : Integer'Base) return Integer'Base;

 -- function "**" (Left : Integer'Base; Right : Natural) return Integer'Base;

 -- The floating point type root_real is predefined; The corresponding universal type is universal_real.
 type Float is digits implementation-defined;
 -- The predefined operators for this type are as follows:
 -- function "=" (Left, Right : Float) return Boolean;
 -- function "/=" (Left, Right : Float) return Boolean;
 -- function "<" (Left, Right : Float) return Boolean;
 -- function "<=" (Left, Right : Float) return Boolean;
 -- function ">" (Left, Right : Float) return Boolean;
 -- function ">=" (Left, Right : Float) return Boolean;

 -- function "+" (Right : Float) return Float;
 -- function "–" (Right : Float) return Float;
 -- function "abs" (Right : Float) return Float;
 -- function "+" (Left, Right : Float) return Float;
 -- function "–" (Left, Right : Float) return Float;
 -- function "*" (Left, Right : Float) return Float;
 -- function "/" (Left, Right : Float) return Float;

 -- function "**" (Left : Float; Right : Integer'Base) return Float;

 -- In addition, the following operators are predefined for the root numeric types:
 function "*" (Left : root_integer; Right : root_real) return root_real;
 function "*" (Left : root_real; Right : root_integer) return root_real;
 function "/" (Left : root_real; Right : root_integer) return root_real;
 -- The type universal_fixed is predefined.
 -- The only multiplying operators defined between fixed point types are:

 function "*" (Left : universal_fixed; Right : universal_fixed)
 return universal_fixed;
 function "/" (Left : universal_fixed; Right : universal_fixed)
 return universal_fixed;

 -- The declaration of type Character is based on the standard ISO 8859-1 character set.

-- There are no character literals corresponding to the positions forcontrol characters.
-- They are indicated in italics in this definition. See 3.5.2.

type Character is

(nul, soh, stx, etx, eot, enq, ack, bel, -- 0 (16#00#) .. 7 (16#07#)
 bs, ht, lf, vt, ff, cr, so, si, -- 8 (16#08#) .. 15 (16#0F#)
 dle, dc1, dc2, dc3, dc4, nak, syn, etb, -- 16 (16#10#) .. 23 (16#17#)
 can, em, sub, esc, fs, gs, rs, us, -- 24 (16#18#) .. 31 (16#1F#)
' ', '!', '"', '#', '$', '%', '&', ''', -- 32 (16#20#) .. 39 (16#27#)
'(', ')', '*', '+', ',' ,'-', '.', '/', -- 40 (16#28#) .. 47 (16#2F#)
'0', '1', '2', '3', '4', '5', '6', '7', -- 48 (16#30#) .. 55 (16#37#)
'8', '9', ':', ';', '<', '=', '>', '?', -- 56 (16#38#) .. 63 (16#3F#)
'@', 'A', 'B', 'C', 'D', 'E', 'F', 'G', -- 64 (16#40#) .. 71 (16#47#)
'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', -- 72 (16#48#) .. 79 (16#4F#)
'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', -- 80 (16#50#) .. 87 (16#57#)
'X', 'Y', 'Z', '[', '\', ']', '^', '_', -- 88 (16#58#) .. 95 (16#5F#)
'`', 'a', 'b', 'c', 'd', 'e', 'f', 'g', -- 96 (16#60#) .. 103 (16#67#)
'h', 'I', 'j', 'k', 'l', 'm', 'n', 'o', -- 104 (16#68#) .. 111 (16#6F#)
'p', 'q', 'r', 's', 't', 'u', 'v', 'w', -- 112 (16#70#) .. 119 (16#77#)
'x', 'y', 'z', '{', '|', '}', '~', del, -- 120 (16#78#) .. 127 (16#7F#)
reserved_128, reserved_129, bph, nbh, -- 128 (16#80#) .. 131 (16#83#)
reserved_132, nel, ssa, esa, -- 132 (16#84#) .. 135 (16#87#)
hts, htj, vts, pld, plu, ri, ss2, ss3, -- 136 (16#88#) .. 143 (16#8F#)
dcs, pu1, pu2, sts, cch, mw, spa, epa, -- 144 (16#90#) .. 151 (16#97#)
sos, reserved_153, sci, csi, -- 152 (16#98#) .. 155 (16#9B#)
st, osc, pm, apc, -- 156 (16#9C#) .. 159 (16#9F#)
' ', '¡', '¢', '£', '¤', '¥', '¦', '§' -- 160 (16#A0#) .. 167 (16#A7#)
'¨', '©', 'ª', '«', '¬', '-', '®', '¯' -- 168 (16#A8#) .. 175 (16#AF#)
'°', '±', '²', '³', '´', 'µ', '¶', '·' -- 176 (16#B0#) .. 183 (16#B7#)
'¸','¹', 'º', '»', '¼', '½', '¾', '¿' -- 184 (16#B8#) .. 191 (16#BF#)

Warning:
Do not use predefined Float from
package Standard in your production
programs. This type is useful for
student programs but is not well-suited
to portable software targeted to some
actual production application.

See also:
package Ada.Characters
package Ada.Characters.Latin_1
package Ada.Characters.Handling

Note: Fixed point arithmetic on root types
and universal fixed-point types is defined
here. See also ALRM 4.5.5/16-20

Characters beyond
the normal 7 bit
ASCII format now
use 8 bits. Also see
Wide-Character

Ada Distilled by Richard Riehle

 Page 98 of 117

'À', 'Á', 'Â', 'Ã', 'Ä', 'Å', 'Æ', 'Ç' -- 192 (16#C0#) .. 199 (16#C7#)
'È', 'É', 'Ê', 'Ë', 'Ì', 'Í', 'Î', 'Ï' -- 200 (16#C8#) .. 207 (16#CF#)
'Ð', 'Ñ', 'Ò', 'Ó', 'Ô', 'Õ', 'Ö', '×' -- 208 (16#D0#) .. 215 (16#D7#)
'Ø', 'Ù', 'Ú', 'Û', 'Ü', 'Ý', 'Þ', 'ß' -- 216 (16#D8#) .. 223 (16#DF#)
'à', 'á', 'â', 'ã', 'ä', 'å', 'æ', 'ç' -- 224 (16#E0#) .. 231 (16#E7#)
'è', 'é', 'ê', 'ë', 'ì', 'í', 'î', 'ï' -- 232 (16#E8#) .. 239 (16#EF#)
'ð', 'ñ', 'ò', 'ó', 'ô', 'õ', 'ö', '÷' -- 240 (16#F0#) .. 247 (16#F7#)
'ø', 'ù', 'ú', 'û', 'ü', 'ý', 'þ', 'ÿ' -- 248 (16#F8#) .. 255 (16#FF#)

 -- The predefined operators for the type Character are the same as for any enumeration type.
 -- The declaration of type Wide_Character is based on the standard ISO 10646 BMP character set.
 -- The first 256 positions have the same contents as type Character. See 3.5.2.

 type Wide_Character is (nul, soh ... FFFE, FFFF);

 package ASCII is ... end ASCII; -- Obsolescent; see J.5

 -- Predefined string types:

 type String is array(Positive range <>) of Character;
 pragma Pack(String);
 -- The predefined operators for this type are as follows:
 -- function "=" (Left, Right: String) return Boolean;
 -- function "/=" (Left, Right: String) return Boolean;
 -- function "<" (Left, Right: String) return Boolean;
 -- function "<=" (Left, Right: String) return Boolean;
 -- function ">" (Left, Right: String) return Boolean;
 -- function ">=" (Left, Right: String) return Boolean;

 -- function "&" (Left: String; Right: String) return String;
 -- function "&" (Left: Character; Right: String) return String;
 -- function "&" (Left: String; Right: Character) return String;
 -- function "&" (Left: Character; Right: Character) return String;
 type Wide_String is array(Positive range <>) of Wide_Character;
 pragma Pack(Wide_String);

 -- The predefined operators for Wide_String correspond to those for String

 type Duration is delta implementation-defined range implementation-defined;
 -- The predefined operators for the type Duration are the same as forany fixed point type.

 -- The predefined exceptions:
 Constraint_Error: exception;
 Program_Error : exception;
 Storage_Error : exception;
 Tasking_Error : exception;

end Standard;

A.2 The Package Ada

package Ada is
 pragma Pure(Ada);
end Ada

This is equivalent to Unicode. Can be used for
internationalization of a language implementation.

Strings of with the same constraint can
take advantage of these operators.

This operator is used to catenate
arrays to arrays, arrays to
components, etc. It is defined for
any kind of array as well as for
predefined type Strring

Used in delay statements in tasking. See
data types in package Calendar, ALRM 9.6

These exceptions are predefined in this package. A designer may define more
exceptions. Note the absence of Numeric_Error, which is now obsolescent in the
current standard.

package Ada is the parent package for many of the library units. It has no type
definitions and no operations. It is nothing more than a placeholder packge that
provides a common root (common ancestor) for all of its descendants. As you learn
more about parent and child packages, you will understand the value for having one
package that is a common root.

The expression, pragma Pure (Ada), is a compiler directive. Pragmas are compiler
directives. This directive is of little interest to you at this stage of your study. It will be
very important when you being developing larger software systems, especially those
that require the Distributed Systems Annex (Annex E).

Ada Distilled for Ada 2005 by Richard Riehle

 Page 99 of 117

package Numerics

This is the root package for a variety of numerics packages.

package Ada.Numerics is
 pragma Pure(Numerics);
 Argument_Error : exception;
 Pi : constant := 3.14159_26535_89793_23846_26433_83279_50288_41971_69399_37511;
 e : constant := 2.71828_18284_59045_23536_02874_71352_66249_77572_47093_69996;
end Ada.Numerics;

A.5.1 Elementary Functions

Elementary functions are defined as a generic package. This means it must be instantiated before it can be
used. Note also that trigonometric functions are in radians. Also, the function "**" is an operator that
must be made directly visible before it can be used. We recommend renaming it in the scope where it is
required. Also, note that the parameters and return type are Float_Type'Base. This reduces any overflow
problems associated with intermediate results in extended expressions.

generic
 type Float_Type is digits <>;
package Ada.Numerics.Generic_Elementary_Functions is
 pragma Pure(Generic_Elementary_Functions);
 function Sqrt (X : Float_Type'Base) return Float_Type'Base;
 function Log (X : Float_Type'Base) return Float_Type'Base;
 function Log (X, Base : Float_Type'Base) return Float_Type'Base;
 function Exp (X : Float_Type'Base) return Float_Type'Base;
 function "**" (Left, Right : Float_Type'Base) return Float_Type'Base;

 -- Trigonometric functions default in Radians
 function Sin (X : Float_Type'Base) return Float_Type'Base;
 function Sin (X, Cycle : Float_Type'Base) return Float_Type'Base;
 function Cos (X : Float_Type'Base) return Float_Type'Base;
 function Cos (X, Cycle : Float_Type'Base) return Float_Type'Base;
 function Tan (X : Float_Type'Base) return Float_Type'Base;
 function Tan (X, Cycle : Float_Type'Base) return Float_Type'Base;
 function Cot (X : Float_Type'Base) return Float_Type'Base;
 function Cot (X, Cycle : Float_Type'Base) return Float_Type'Base;
 function Arcsin (X : Float_Type'Base) return Float_Type'Base;
 function Arcsin (X, Cycle : Float_Type'Base) return Float_Type'Base;
 function Arccos (X : Float_Type'Base) return Float_Type'Base;
 function Arccos (X, Cycle : Float_Type'Base) return Float_Type'Base;
 function Arctan (Y : Float_Type'Base;
 X : Float_Type'Base := 1.0) return Float_Type'Base;
 function Arctan (Y : Float_Type'Base;
 X : Float_Type'Base := 1.0;
 Cycle : Float_Type'Base) return Float_Type'Base;
 function Arccot (X : Float_Type'Base;
 Y : Float_Type'Base := 1.0) return Float_Type'Base;
 function Arccot (X : Float_Type'Base;
 Y : Float_Type'Base := 1.0;
 Cycle : Float_Type'Base) return Float_Type'Base;
 function Sinh (X : Float_Type'Base) return Float_Type'Base;
 function Cosh (X : Float_Type'Base) return Float_Type'Base;
 function Tanh (X : Float_Type'Base) return Float_Type'Base;
 function Coth (X : Float_Type'Base) return Float_Type'Base;
 function Arcsinh (X : Float_Type'Base) return Float_Type'Base;
 function Arccosh (X : Float_Type'Base) return Float_Type'Base;
 function Arctanh (X : Float_Type'Base) return Float_Type'Base;
 function Arccoth (X : Float_Type'Base) return Float_Type'Base;

end Ada.Numerics.Generic_Elementary_Functions;

For the ** function,
you may have a
visibility problem.
You can solve it by
renaming it locally
after instantiating the
package.

If cycle is not
supplied, the default
is in radians.

Log default base is
natural (e). The base
may be other than e.

Float_Type'Base
permits an
unconstrained result
that will not raise a
constraint error
during intermediate
operations. This
eliminates spurious
range constraint
violations in complex
expressions.

Ada Distilled by Richard Riehle

 Page 100 of 117

A.10 Ada.Text_IO (Annotated)

with Ada.IO_Exceptions; -- Declared in Annex A of the Ada Language Reference Manual
package Ada.Text_IO is -- Converts human-readable text to machine-readable as well as standard input/output
 type File_Type is limited private; -- Internal file handle for a program
 type File_Mode is (In_File, Out_File, Append_File); -- Controls direction of data flow
 type Count is range 0 .. implementation-defined; -- An integer data type; see Positive_Count
 subtype Positive_Count is Count range 1 .. Count'Last; -- May be used with type Count
 Unbounded : constant Count := 0; -- line and page length
 subtype Field is Integer range 0 .. implementation-defined; -- Varies by platform.
 subtype Number_Base is Integer range 2 .. 16; -- Only use: 2, 8, 10 and 16

 type Type_Set is (Lower_Case, Upper_Case); -- Use this for enumerated types
 -- File Management
 procedure Create (File : in out File_Type; -- Program refers to this parameter
 Mode : in File_Mode := Out_File; -- Almost always an output file
 Name : in String := ""; -- The external name for the file
 Form : in String := ""); -- Usage not defined by the language
 procedure Open (File : in out File_Type;
 Mode : in File_Mode; -- May be opened for input or for append
 Name : in String;
 Form : in String := ""); -- Form is rarely used in Ada 95. Compiler dependent.

 procedure Close (File : in out File_Type); -- Pretty much what youwould think this would do
 procedure Delete (File : in out File_Type);
 procedure Reset (File : in out File_Type; Mode : in File_Mode); -- Resets the mode of the file
 procedure Reset (File : in out File_Type); -- Resets the mode of the file
 function Mode (File : in File_Type) return File_Mode; -- Query the mode of a file
 function Name (File : in File_Type) return String; -- Query the external name of a file
 function Form (File : in File_Type) return String; -- Varies by compiler implementation

 function Is_Open(File : in File_Type) return Boolean; -- Query the open status of a file
 -- Control of default input and output files
 procedure Set_Input (File : in File_Type); -- Set this file as the default input file; must be open
 procedure Set_Output(File : in File_Type); -- Set this file as the default ouput file; must be open
 procedure Set_Error (File : in File_Type); -- Use this as the standard error file; must be open
 function Standard_Input return File_Type; -- Standard input is usually a keyboard
 function Standard_Output return File_Type; -- Standard output is usually a video display terminal
 function Standard_Error return File_Type;

 function Current_Input return File_Type; -- Usually the same as Standard Input
 function Current_Output return File_Type;
 function Current_Error return File_Type;
 type File_Access is access constant File_Type; -- Enable a pointer value to a file handle
 function Standard_Input return File_Access;
 function Standard_Output return File_Access;
 function Standard_Error return File_Access;

 function Current_Input return File_Access;
 function Current_Output return File_Access;
 function Current_Error return File_Access;
 -- Buffer control
 procedure Flush (File : in out File_Type); -- Flushes any internal buffers
 procedure Flush; -- Flush synchronizes internal file with external file by Flushing internal buffers
 -- Specification of line and page lengths
 procedure Set_Line_Length(File : in File_Type; To : in Count);
 procedure Set_Line_Length(To : in Count);

 procedure Set_Page_Length(File : in File_Type; To : in Count);
 procedure Set_Page_Length(To : in Count);
 function Line_Length(File : in File_Type) return Count;
 function Line_Length return Count;
 function Page_Length(File : in File_Type) return Count;
 function Page_Length return Count;
 -- Column, Line, and Page Control

Text_IO enables machine-readable data to be formatted as human-readable data and human-readable data to
be conveted to machine-readable. For character and string types, no conversion from internal to external
format is required. For all other types, transformations should be done with Text_IO; Some operations are
overloaded. Overloading is most common when there are two file destinations for an action: a named file or
default standard file.

Access to File_Type has been added to Ada 95 version
of Text_IO. This turns out to be quite useful for many
situations. Since file type is a limited private type,
assignment is impossible. However, assignment is
possible on an access value (value of an access type).

Note: You may use Count instead of
Positive_Count but be careful of potential
constraint error.

Note overloading of
subprogram names
from this point on.

Ada Distilled by Richard Riehle

 Page 101 of 117

 procedure New_Line (File : in File_Type; -- Carriage return/Line Feed for a File
 Spacing : in Positive_Count := 1); -- Default to 1 unless otherwise called
 procedure New_Line (Spacing : in Positive_Count := 1); -- CR/LF on the default output device
 procedure Skip_Line (File : in File_Type; -- Discard characters up to line terminator
 Spacing : in Positive_Count := 1); -- single line by default
 procedure Skip_Line (Spacing : in Positive_Count := 1); -- single line by default
 function End_Of_Line(File : in File_Type) return Boolean; -- Are we at the end of a line?
 function End_Of_Line return Boolean; -- Are we at the end of a line?

 procedure New_Page (File : in File_Type); -- Terminate current page with page terminator
 procedure New_Page;
 procedure Skip_Page (File : in File_Type); -- Discard characters to end of page
 procedure Skip_Page;
 function End_Of_Page(File : in File_Type) return Boolean; -- Is this the end of a page?
 function End_Of_Page return Boolean;
 function End_Of_File(File : in File_Type) return Boolean; -- Is this the end of file?
 function End_Of_File return Boolean;

 procedure Set_Col (File : in File_Type; To : in Positive_Count); -- Cursor to designated col
 procedure Set_Col (To : in Positive_Count); -- Do not set this to a number less than current Col
 procedure Set_Line(File : in File_Type; To : in Positive_Count); -- Cursor to designated line
 procedure Set_Line(To : in Positive_Count); -- Must be value greater than current Line
 function Col (File : in File_Type) return Positive_Count; -- What column number in file?
 function Col return Positive_Count; -- What column number?
 function Line(File : in File_Type) return Positive_Count; -- What line number in file?
 function Line return Positive_Count; -- What line number?

 function Page(File : in File_Type) return Positive_Count; -- What page number in file?
 function Page return Positive_Count; -- What page number?
 -- Character Input-Output
 procedure Get(File : in File_Type; Item : out Character); -- Gets single character from file
 procedure Get(Item : out Character); -- Gets single character from keyboard
 procedure Put(File : in File_Type; Item : in Character); -- Put single character; no CR/LF
 procedure Put(Item : in Character); -- Put never emits CR/LF

 procedure Look_Ahead (File : in File_Type; -- Item set to next character without
 Item : out Character; -- consuming it.
 End_Of_Line : out Boolean); -- True if End of Line/End of Page/End of File
 procedure Look_Ahead (Item : out Character; -- What is next character; don't get it yet
 End_Of_Line : out Boolean);
 procedure Get_Immediate(File : in File_Type; -- Get the next character without CR/LF
 Item : out Character); -- Wait until character is available
 procedure Get_Immediate(Item : out Character); -- Wait until character is available

 procedure Get_Immediate(File : in File_Type; -- Only get character if it is available
 Item : out Character;
 Available : out Boolean); -- False if character is not available
 procedure Get_Immediate(Item : out Character;
 Available : out Boolean); -- False if character is not available
 -- String Input-Output
 procedure Get(File : in File_Type; Item : out String); -- Get fixed sized string
 procedure Get(Item : out String); -- Must enter entire string of size specified

 procedure Put(File : in File_Type; Item : in String); -- Output string; no CR/LF
 procedure Put(Item : in String); -- No carriage return/line feed character
 procedure Get_Line(File : in File_Type; -- String will vary in size based on value of Last
 Item : out String; -- Must be large enough to hold all characters of input
 Last : out Natural); -- Number of characters up to line terminator (CR/LF)
 procedure Get_Line(Item : out String; Last : out Natural);
 procedure Put_Line(File : in File_Type; Item : in String);
 procedure Put_Line(Item : in String); -- Include carriage return/line feed character

Ada Distilled by Richard Riehle

 Page 102 of 117

 -- Generic packages for Input-Output of any type of signed integer
 -- Consider Ada.Integer_Text_IO for standard Integer; you can with that package and get the same result for type Integer.
 generic
 type Num is range <>; -- Generic formal paramter for sikgned numeric integer type
 package Integer_IO is -- Conversion between human-readable text and internal number format.
 Default_Width : Field := Num'Width; -- How big is the number going to be?
 Default_Base : Number_Base := 10; -- See the options for number base in beginning of Text_IO
 procedure Get(File : in File_Type;
 Item : out Num; -- Corresponds to generic formal parameter, above
 Width : in Field := 0); -- May specify exact number of input characters.
 procedure Get(Item : out Num;
 Width : in Field := 0); -- Should usually leave this as zero

 procedure Put(File : in File_Type; -- The file type is the internal handle for the file
 Item : in Num; -- Corresponds to generic formal parameter, above
 Width : in Field := Default_Width; -- Ordinarily, don't change this
 Base : in Number_Base := Default_Base);
 procedure Put(Item : in Num;
 Width : in Field := Default_Width;
 Base : in Number_Base := Default_Base);
 procedure Get(From : in String; -- 10.2.1 of this book, line 56 for an example of this
 Item : out Num; -- The actual numeric value of the string
 Last : out Positive); -- Index value of last character in From
 procedure Put(To : out String; -- 10.2.2 of this book, line 41 for an example of this
 Item : in Num; -- Can raise a data error, or other IO_Error. Check this first.
 Base : in Number_Base := Default_Base); -- Consider output in other than base ten.
 end Integer_IO;

 generic
 type Num is mod <>; -- Generic formal paramter for unsigned numeric type. See ALRM 3.5.4/10
 package Modular_IO is
 Default_Width : Field := Num'Width;
 Default_Base : Number_Base := 10;
 procedure Get(File : in File_Type;
 Item : out Num;
 Width : in Field := 0);
 procedure Get(Item : out Num; Width : in Field := 0);

 procedure Put(File : in File_Type;
 Item : in Num;
 Width : in Field := Default_Width;
 Base : in Number_Base := Default_Base);
 procedure Put(Item : in Num;
 Width : in Field := Default_Width;
 Base : in Number_Base := Default_Base);
 procedure Get(From : in String;
 Item : out Num;
 Last : out Positive);
 procedure Put(To : out String;
 Item : in Num; -- Get a string from an float type; convert float type to string
 Base : in Number_Base := Default_Base);
 end Modular_IO;

-- Generic packages for Input-Output of Real Types
 generic
 type Num is digits <>; -- Generic formal paramter for floating point numeric type; ALRM 3.5.7
 package Float_IO is
 Default_Fore : Field := 2; -- Number of Positions to left of decimal point
 Default_Aft : Field := Num'Digits–1; -- Number of Positions to right of decimal point
 Default_Exp : Field := 3; -- For scientific notation; often zero is OK
 procedure Get(File : in File_Type;
 Item : out Num;
 Width : in Field := 0); -- May specify exact width; usually don't; leave as zero
 procedure Get(Item : out Num;
 Width : in Field := 0);

 procedure Put(File : in File_Type;
 Item : in Num;
 Fore : in Field := Default_Fore; -- Number of Positions to left of decimal point

Modular_IO is new to Ada 95 and applies
to a new Modular data type.

A Modular type is unsigned and has
wraparound arithmetic semantics. It is
especially useful for array indexes instead
of a signed integer type.

Following is a set of generic input/output packages nested within Ada.Text_IO

Ada Distilled by Richard Riehle

 Page 103 of 117

 Aft : in Field := Default_Aft; -- Number of Positions to right of decimal point
 Exp : in Field := Default_Exp); -- Set this to zero if you don't want scientific notation
 procedure Put(Item : in Num;
 Fore : in Field := Default_Fore; -- Number of Positions to left of decimal point
 Aft : in Field := Default_Aft; -- Number of Positions to right of decimal point
 Exp : in Field := Default_Exp); -- Set this to zero if you don't want scientific notation

 -- Use these procedures to convert a floating-point value to a string or a string to a floating-point value
 procedure Get(From : in String; -- Get floating point value from a string value
 Item : out Num; -- Converts a valid floating point string to a float value
 Last : out Positive);
 procedure Put(To : out String; -- Write a floating point value into an internal string
 Item : in Num; -- Converts a floating point value to a variable of type String
 Aft : in Field := Default_Aft; -- Number of Positions to right of decimal point
 Exp : in Field := Default_Exp); -- Set this to zero if you don't want scientific notation
 end Float_IO;

 generic
 type Num is delta <>; -- Generic formal paramter for fixed point numeric types
 package Fixed_IO is -- Input/Output of fixed point numeric types

 Default_Fore : Field := Num'Fore;
 Default_Aft : Field := Num'Aft; -- Number of Positions to right of decimal point
 Default_Exp : Field := 0;
 procedure Get(File : in File_Type;
 Item : out Num;
 Width : in Field := 0);
 procedure Get(Item : out Num;
 Width : in Field := 0);
 procedure Put(File : in File_Type;
 Item : in Num;
 Fore : in Field := Default_Fore; -- Number of Positions to left of decimal point
 Aft : in Field := Default_Aft; -- Number of Positions to right of decimal point
 Exp : in Field := Default_Exp); -- Set this to zero if you don't want scientific notation
 procedure Put(Item : in Num;
 Fore : in Field := Default_Fore; -- Number of Positions to left of decimal point
 Aft : in Field := Default_Aft; -- Number of Positions to right of decimal point
 Exp : in Field := Default_Exp); -- Set this to zero if you don't want scientific notation
 -- Use these procedures to convert a fixed-point value to a string or a string to a fixed-point value
 procedure Get(From : in String;
 Item : out Num;
 Last : out Positive);
 procedure Put(To : out String;
 Item : in Num;
 Aft : in Field := Default_Aft; -- Number of Positions to right of decimal point
 Exp : in Field := Default_Exp); -- Set this to zero if you don't want scientific notation
 end Fixed_IO;

 generic
 type Num is delta <> digits <>; -- Generic formal paramter for decimal numeric type
 package Decimal_IO is -- Decimal types are used for financial computing.

 Default_Fore : Field := Num'Fore;
 Default_Aft : Field := Num'Aft;
 Default_Exp : Field := 0;
 procedure Get(File : in File_Type;
 Item : out Num;
 Width : in Field := 0);
 procedure Get(Item : out Num;
 Width : in Field := 0);
 procedure Put(File : in File_Type;
 Item : in Num;
 Fore : in Field := Default_Fore;
 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);
 procedure Put(Item : in Num;
 Fore : in Field := Default_Fore;

See: ALRM Annex F
 ALRM 3.5.9/4, ALRM 3.5.9/16

A decimal type is a special kind of fixed-point
type in which the delta must be a power of ten.
This is unlike a normal fixed point type where
the granluarity is a power of two.

Decimal types are more accurate for monetary
applications and others that can be best served
using power of ten decimal fractions.

Ada Distilled by Richard Riehle

 Page 104 of 117

 Aft : in Field := Default_Aft;
 Exp : in Field := Default_Exp);
 -- Use these procedures to convert a decimal value to a string or a string to a decimal value
 procedure Get(From : in String;
 Item : out Num;
 Last : out Positive);
 procedure Put(To : out String;
 Item : in Num;
 Aft : in Field := Default_Aft; -- see type defined above
 Exp : in Field := Default_Exp); -- see type defined above
 end Decimal_IO;

 -- Generic package for Input-Output of Enumeration Types
 generic
 type Enum is (<>); -- Actual must be a discrete type
 package Enumeration_IO is

 Default_Width : Field := 0;
 Default_Setting : Type_Set := Upper_Case;
 procedure Get(File : in File_Type;
 Item : out Enum);
 procedure Get(Item : out Enum);
 procedure Put(File : in File_Type;
 Item : in Enum;
 Width : in Field := Default_Width;
 Set : in Type_Set := Default_Setting);
 procedure Put(Item : in Enum;
 Width : in Field := Default_Width;
 Set : in Type_Set := Default_Setting);
 -- Use these procedures to convert a enumerated value to a string or a string to a enumerated value
 procedure Get(From : in String;
 Item : out Enum;
 Last : out Positive);
 procedure Put(To : out String;
 Item : in Enum;
 Set : in Type_Set := Default_Setting); -- see type defined above
 end Enumeration_IO;

 -- Input-Output Exceptions
 Status_Error : exception renames IO_Exceptions.Status_Error;
 Mode_Error : exception renames IO_Exceptions.Mode_Error;
 Name_Error : exception renames IO_Exceptions.Name_Error;
 Use_Error : exception renames IO_Exceptions.Use_Error; -- from package IO_Exceptions
 Device_Error : exception renames IO_Exceptions.Device_Error;
 End_Error : exception renames IO_Exceptions.End_Error;
 Data_Error : exception renames IO_Exceptions.Data_Error;
 Layout_Error : exception renames IO_Exceptions.Layout_Error;
private
 ... -- not specified by the language
end Ada.Text_IO;

An enumerated type is an ordered set of
values for a named type. Example:

type Color is (Red, Yellow, Blue);
type Month is (Jan, Feb,.., Dec)
 ... is not legal Ada
type Day is (Monday, Tuesday, ...);
type Priority is (Low, Medium, High);

Ada Distilled by Richard Riehle

 Page 105 of 117

Ada.Streams.Stream_IO

with Ada.IO_Exceptions;
package Ada.Streams.Stream_IO is
 type Stream_Access is access all Root_Stream_Type'Class;
 type File_Type is limited private;
 type File_Mode is (In_File, Out_File, Append_File);
 type Count is range 0 .. implementation-defined;
 subtype Positive_Count is Count range 1 .. Count'Last;
 -- Index into file, in stream elements.
 procedure Create (File : in out File_Type;
 Mode : in File_Mode := Out_File;
 Name : in String := "";
 Form : in String := "");
 procedure Open (File : in out File_Type;
 Mode : in File_Mode;
 Name : in String;
 Form : in String := "");
 procedure Close (File : in out File_Type);
 procedure Delete (File : in out File_Type);
 procedure Reset (File : in out File_Type; Mode : in File_Mode);
 procedure Reset (File : in out File_Type);
 function Mode (File : in File_Type) return File_Mode;
 function Name (File : in File_Type) return String;
 function Form (File : in File_Type) return String;
 function Is_Open (File : in File_Type) return Boolean;
 function End_Of_File (File : in File_Type) return Boolean;
 function Stream (File : in File_Type) return Stream_Access;
 -- Return stream access for use with T’Input and T’Output
 -- Read array of stream elements from file

 procedure Read (File : in File_Type;
 Item : out Stream_Element_Array;
 Last : out Stream_Element_Offset;
 From : in Positive_Count);
 procedure Read (File : in File_Type;
 Item : out Stream_Element_Array;
 Last : out Stream_Element_Offset);
 -- Write array of stream elements into file
 procedure Write (File : in File_Type;
 Item : in Stream_Element_Array;
 To : in Positive_Count);
 procedure Write (File : in File_Type;
 Item : in Stream_Element_Array);
 -- Operations on position within file
 procedure Set_Index(File : in File_Type; To : in Positive_Count);
 function Index(File : in File_Type) return Positive_Count;
 function Size (File : in File_Type) return Count;
 procedure Set_Mode(File : in out File_Type; Mode : in File_Mode);
 procedure Flush(File : in out File_Type);
 -- Exceptions
 Status_Error : exception renames IO_Exceptions.Status_Error;
 Mode_Error : exception renames IO_Exceptions.Mode_Error;
 Name_Error : exception renames IO_Exceptions.Name_Error;
 Use_Error : exception renames IO_Exceptions.Use_Error;
 Device_Error : exception renames IO_Exceptions.Device_Error;
 End_Error : exception renames IO_Exceptions.End_Error;
 Data_Error : exception renames IO_Exceptions.Data_Error;
private
 ... -- not specified by the language
end Ada.Streams.Stream_IO;

Permits input/ouput of data in terms of System.Storage_Unit.
Use this with attributes: S'Input, S'Output, S'Read, S'Write.
This package makes it possible to store a tag of a tagged type
along with the rest of the data in the object.

Note the consistency of this package
with other input-output packages

Supports direct_IO on
stream items

Ada Distilled by Richard Riehle

 Page 106 of 117

Ada.Calendar -- ALRM 9..6 (also See ALRM, Annex D.8 for Ada.Real-Time calendar package)

package Ada.Calendar is -- 1
 type Time is private; -- 2 Encapsulated; use public methods
 subtype Year_Number is Integer range 1901 .. 2099; -- 3 Ada has always been Y2K compliant
 subtype Month_Number is Integer range 1 .. 12; -- 4
 subtype Day_Number is Integer range 1 .. 31; -- 5
 subtype Day_Duration is Duration range 0.0 .. 86_400.0; -- 6 Total number of seconds in one day
 function Clock return Time; -- 7 Gets the current clock time
 function Year (Date : Time) return Year_Number; -- 8
 function Month (Date : Time) return Month_Number; -- 9
 function Day (Date : Time) return Day_Number; -- 10
 function Seconds(Date : Time) return Day_Duration; -- 11

 procedure Split (Date : in Time; -- 12
 Year : out Year_Number; -- 13
 Month : out Month_Number; -- 14
 Day : out Day_Number; -- 15
 Seconds : out Day_Duration); -- 16
 function Time_Of(Year : Year_Number; -- 17
 Month : Month_Number; -- 18
 Day : Day_Number; -- 19
 Seconds : Day_Duration := 0.0) return Time; -- 20
 -- 21
 function "+" (Left : Time; Right : Duration) return Time; -- 22
 function "+" (Left : Duration; Right : Time) return Time; -- 23
 function "–" (Left : Time; Right : Duration) return Time; -- 24
 function "–" (Left : Time; Right : Time) return Duration; -- 25
 function "<" (Left, Right : Time) return Boolean; -- 26
 function "<="(Left, Right : Time) return Boolean; -- 27
 function ">" (Left, Right : Time) return Boolean; -- 28
 function ">="(Left, Right : Time) return Boolean; -- 29
 Time_Error : exception; -- 30
private -- 31
 ... -- not specified by the language -- 32
end Ada.Calendar; -- 33

type Duration is defined in
package Standard

Ada Distilled by Richard Riehle

 Page 107 of 117

System Description Package

package System is -- 1 Required for every compiler
 pragma Preelaborate(System); -- 2 Elaborate at compile time
 type Name is implementation-defined-enumeration-type; -- 3 Look this up for your compiler
 System_Name : constant Name := implementation-defined; -- 4
 -- System-Dependent Named Numbers: -- 5
 Min_Int : constant := root_integer'First; -- 6 root integer is base type
 Max_Int : constant := root_integer'Last; -- 7 for all integers in this system
 Max_Binary_Modulus : constant := implementation-defined; -- 8
 Max_Nonbinary_Modulus : constant := implementation-defined; -- 9
 Max_Base_Digits : constant := root_real'Digits; -- 10
 Max_Digits : constant := implementation-defined; -- 11
 Max_Mantissa : constant := implementation-defined; -- 12
 Fine_Delta : constant := implementation-defined; -- 13
 Tick : constant := implementation-defined; -- 14
 -- Storage-related Declarations: -- 15
 type Address is implementation-defined; -- 16 Usually a private type
 Null_Address : constant Address; -- 17
 Storage_Unit : constant := implementation-defined; -- 18
 Word_Size : constant := implementation-defined * Storage_Unit; -- 19
 Memory_Size : constant := implementation-defined; -- 20
 Address Comparison -- 21
 function "<" (Left, Right : Address) return Boolean; -- 22
 function "<="(Left, Right : Address) return Boolean; -- 23
 function ">" (Left, Right : Address) return Boolean; -- 24
 function ">="(Left, Right : Address) return Boolean; -- 25
 function "=" (Left, Right : Address) return Boolean; -- 26
-- function "/=" (Left, Right : Address) return Boolean; -- 27
 -- "/=" is implicitly defined -- 28
 pragma Convention(Intrinsic, "<"); -- 29
 ... -- and so on for all language-defined subprograms in this package -- 30
 -- Other System-Dependent Declarations: -- 31
 type Bit_Order is (High_Order_First, Low_Order_First); -- 32 Big-endian/Little-endian
 Default_Bit_Order : constant Bit_Order; -- 33
 -- Priority-related declarations (see D.1): -- 34
 subtype Any_Priority is Integer range implementation-defined; -- 35 Used for tasking
 subtype Priority is Any_Priority range Any_Priority'First .. implementation-defined; -- 36
 subtype Interrupt_Priority is Any_Priority range Priority'Last+1 .. Any_Priority'Last; -- 37
 Default_Priority : constant Priority := (Priority'First + Priority'Last)/2; -- 38
private -- 39
 ... -- not specified by the language -- 40
end System; -- 41

Also see: System.Storage_Elements
 System.Address_To_Access_Conversion
 System.Storage Pools

Arithmetic operators for type
Address are defined in package
System.Storage_Elements

An implementation may add more specifications and declarations to this
package to make it conformant with the underlying system platform.

Ada Distilled for Ada 2005 by Richard Riehle

 Page 108 of 117

Annex L Pragmas - Language-defined Compiler Directives

Pragmas are Ada compiler directives. The word pragma has the same root as the word, pragmatic. It orginates in a
Greek word which, roughly translated, means “Do this.” Some pragmas affect the process of compilation. Others tell
the compiler about what elements belong in the Run-time Environment (RTE), and others restrict or expand the role
of of some language feature.

pragma All_Calls_Remote[(library_unit_name)]; — See E.2.3.
pragma Asynchronous(local_name); — See E.4.1.
pragma Atomic(local_name); — See C.6.
pragma Atomic_Components(array_local_name); — See C.6.
pragma Attach_Handler(handler_name, expression); — See C.3.1.

pragma Controlled(first_subtype_local_name); — See 13.11.3.
pragma Convention([Convention =>] convention_identifier,[Entity =>] local_name);
 — See B.1.
pragma Discard_Names[([On =>] local_name)]; — See C.5.
pragma Elaborate(library_unit_name{, library_unit_name}); — See 10.2.1.

pragma Elaborate_All(library_unit_name{, library_unit_name}); — See 10.2.1.
pragma Elaborate_Body[(library_unit_name)]; — See 10.2.1.
pragma Export([Convention =>] convention_identifier, [Entity =>] local_name [, [External_Name =>] string_expression]
 [, [Link_Name =>] string_expression]); — See B.1.

pragma Import([Convention =>] convention_identifier, [Entity =>] local_name [, [External_Name =>] string_expression]
 [, [Link_Name =>] string_expression]); — See B.1.
pragma Inline(name {, name}); — See 6.3.2.
pragma Inspection_Point[(object_name {, object_name})]; — See H.3.2.

pragma Interrupt_Handler(handler_name); — See C.3.1.
pragma Interrupt_Priority[(expression)]; — See D.1.
pragma Linker_Options(string_expression); — See B.1.
pragma List(identifier); — See 2.8.
pragma Locking_Policy(policy_identifier); — See D.3.

pragma Normalize_Scalars; — See H.1.
pragma Optimize(identifier); — See 2.8.
pragma Pack(first_subtype_local_name); — See 13.2.
pragma Page; — See 2.8.
pragma Preelaborate[(library_unit_name)]; — See 10.2.1.
pragma Priority(expression); — See D.1.

pragma Pure[(library_unit_name)]; — See 10.2.1.
pragma Queuing_Policy(policy_identifier); — See D.4.
pragma Remote_Call_Interface[(library_unit_name)]; — See E.2.3.
pragma Remote_Types[(library_unit_name)]; — See E.2.2.
pragma Restrictions(restriction{, restriction}); — See 13.12.

pragma Reviewable; — See H.3.1.
pragma Shared_Passive[(library_unit_name)]; — See E.2.1.
pragma Storage_Size(expression); — See 13.3.
pragma Suppress(identifier [, [On =>] name]); — See 11.5.
pragma Task_Dispatching_Policy(policy_identifier); — See D.2.2.

pragma Volatile(local_name); — See C.6.
pragma Volatile_Components(array_local_name); — See C.6.

Ada Distilled for Ada 2005 by Richard Riehle

 Page 109 of 117

Windows 95/98/NT/XP/ME/2000 Programming

NT_Console Package

This package, thanks to Jerry Van Dijk, can be used to format a window with colors, place a cursor
wherever you wish, and create character-based graphics on a Microsoft Windows console screen. You
can access all of the control characters, and you can print the characters defined in Annex A,
package Ada.Characters.Latin_1. This package is required form implementing the tasking problems
shown elsewhere in this book.

--
-- File: nt_console.ads
-- Description: Win95/NT console support
-- Rev: 0.1
-- Date: 18-jan-1998
-- Author: Jerry van Dijk Mail: jdijk@acm.org
--
-- Copyright (c) Jerry van Dijk, 1997, 1998
-- Billie Holidaystraat 28 2324 LK LEIDEN THE NETHERLANDS tel int + 31 71 531 43 65
--
-- Permission granted to use for any purpose, provided this copyright remains attached and unmodified.
--
-- THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
-- WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-- PURPOSE.

package NT_Console is

-- TYPE DEFINITIONS --

 subtype X_Pos is Natural range 0 .. 79;
 subtype Y_Pos is Natural range 0 .. 24;

 type Color_Type is (Black, Blue, Green, Cyan, Red, Magenta, Brown, Gray,
 Light_Blue, Light_Green, Light_Cyan, Light_Red,
 Light_Magenta, Yellow, White);

-- CURSOR CONTROL --

 function Where_X return X_Pos;
 function Where_Y return Y_Pos;

 procedure Goto_XY (X : in X_Pos := X_Pos'First;
 Y : in Y_Pos := Y_Pos'First);

-- COLOR CONTROL --

 function Get_Foreground return Color_Type;
 function Get_Background return Color_Type;

 procedure Set_Foreground (Color : in Color_Type := Gray);
 procedure Set_Background (Color : in Color_Type := Black);

-- SCREEN CONTROL --

 procedure Clear_Screen (Color : in Color_Type := Black);

-- SOUND CONTROL --

 procedure Bleep;

-- INPUT CONTROL --

Not a part of Ada, but a useful package for many
simple programs where formatting is required.

Ada Distilled by Richard Riehle

 Page 110 of 117

 function Get_Key return Character;
 function Key_Available return Boolean;

-- EXTENDED PC KEYS -- Provides access to upper eight bit scan-code on a PC
 -- Defined here is a list of special function keys available in
 -- Microsoft Operating Systems. The full list is in the package specification
 -- but we do not include here since they are seldom used.

Console_IO

This package is designed by Jerry Van Dijk and Richard Riehle. The package body is written by Jerry. It
is a more extensive and more robust version of NT_Console. It is included with the software provided
with this book. Console_IO is excellent for doing I/O on predefined types, formatting a screen, using
color, positioning a cursor exactly where you want it, and accessing low-level scan codes in your program.

CLAW

This is a powerful set of libraries for programming in Microsoft Windows. Available at:
 http://www.rrsoftware.com

GWindows

 This is a set of freeware windows development libraries created by David Botton. You can get this from:
 http://www.adapower.com

JEWL

By far the easiest library for developing elementary Windows programs. This will not take you far in
building industrial strength Windows software, but it will get you started. This library set is particularly
useful if you are completely new to Windows programming.

GtkAda

A portable GUI development environment. You can target Windows, Linux, Unix, and many other
variations on Windowing operating systems. This is not an easy product to use, but it is powerful enough
that you can do almost anything you might want to do. However, if you are only targeting Microsoft,
consider CLAW or GWindows.

Each keypress on a standard PC keyboard generates a scan-code. The scan-code is contained in an eight bit format that uniquely
identifies the format of the keystroke. The scan code is interpreted by the combination of press and release of a keystroke. The
PC's ROM-BIOS sees an Interrupt 9 which triggers the call of an interrupt handling routine. The Interrupt handling routine reads
Port 96 (Hex 60) to decide what keyboard action took place. The interrupt handler returns a 2 byte code to the BIO where a
keyboard service routine examines low-order and high order bytes of a sixteen bit value. The scan code is in the high-order byte.

Certain scan code actions are buffered in a FIFO queue for reading by some application program. Others trigger some immediate
action such as reboot instead of inserting them into the queue.

The special keys in this list are those that can be queued rather than those that trigger an immediate operating system action.

Ada Distilled by Richard Riehle

 Page 111 of 117

C. Bibliography

Books Related to Ada

Ada 95 - The Language Reference Manual ANSI/ISO/IEC 8652:1995

Ada 95 Rationale, The Language and Standard Libraries, Ada Joint Program Office (with Intermetrics)

Beidler, John, Data Structures and Algorithms, An Object-Oriented Approach Using Ada 95,
Springer-Verlag 1997, New York, ISBN 0-387-94834-1

Barnes, John G. P., Programming in Ada 95, Addison-Wesley, 1998, Second Edition
 Be sure you get the second edition; many improvements over the first edition

Ben-Ari, Moti, Understanding Programming Languages, John Wiley & Sons, 1996

Ben-Ari, Moti, Ada for Professional Software Engineers, John Wiley & Sons, 1998

Booch, Grady, Doug Bryan, Charles Petersen, Software Engineering with Ada, Third Edition
 Benjamin/Cummings, 1994 (Ada 83 only)

Booch, Grady, Object Solutions, Managing the Object-Oriented Project, Addison-Wesley, 1996

Burns, Alan; Wellings, Andy; Concurrency in Ada, Cambridge University Press, 1995

Burns, Alan; Wellings, Andy; Real-Time Systems and Programming Languages, Addison-Wesley, 1997

Bryan, Doulass & Mendal, Geoffrey, Exploring Ada (2 vols), Prentice-Hall, 1992

Cohen, Norman, Ada As A Second Language, , Second Edition, McGraw-Hill, 1996

Coleman, Derek, et al Object-Oriented Development; The Fusion Method, Prentice-Hall, 1994

Culwin, Fintan, Ada, A Developmental Approach, , Second Edition, 1997, Prentice-Hall

English, John, Ada 95, The Craft of Object-Oriented Programming, Prentice-Hall, 1997
 (Now available for FTP download on the World Wide Web)

Fayad, Mohammed; Schmidt, Douglas; “Object-Oriented Application Frameworks”, Communications of the ACM,
October 1997 (Frameworks theme issue of CACM)

Feldman, Michael, Software Construction and Data Structures with Ada 95, Addison-Wesley, 1997

Feldman, M.B, and E.B. Koffman, Ada95: Problem Solving and Program Design, Addison-Wesley, 1996

Finklestein A. and Fuks S. (1989) “Multi-party Specification”, Proceedings of 5th International Workshop on
Software Specification and Design, Pittsburgh, PA , pp 185-95

Fowler, Martin and Kendall Scott, UML Distilled, Addison-Wesley Longman, 1997

Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John; Design Patterns, Elements of Resuable Object-
Oriented Software, Addison-Wesley, 1995

Gonzalez, Dean , Ada Programmer’s Handbook, Benjamin/Cummings, 1993 (Ada 83 version only)

Jacobson, Ivar, Object-Oriented Software Engineering: A Use Case Driven Approach, Addison-Wesley, 1994

Ada Distilled by Richard Riehle

 Page 112 of 117

Johnston, Simon, Ada 95 for C and C++ Programmers, Addison-Wesley, 1997

Kain, Richard Y., Computer Architecture, Prentice-Hall, 1989 (because software examples are in Ada)

Loftus, Chris (editor), Ada Yearbook - 1994, IOS Press, 1994

Meyer, Bertrand, Object-Oriented Software Construction, 2nd Editon, Prentice-Hall PTR, 1997
 (Not friendly to Ada, but an excellent treatment of object-oriented programming)

Naiditch, David, Rendezvous with Ada 95, John Wiley & Sons, 1995 (0-471-01276-9)

Rosen, Jean Pierre, ……………………….. HOOD …………………..

Pressman, Roger, Software Engineering, A Practitioner’s Approach, Fourth Edition, McGraw-Hill, 1997

Salus, Peter H, Handbook of Programming Languages, Vol 1, Object-Oriented Programming Languages,
 MacMillan Technical Publishing, 1998 , ISBN 1-57870-009-4

Sigfried, Stefan, Understanding Object-Oriented Software Engineering, IEEE Press, 1995

Skansholm, Jan, Ada From The Beginning, , Third Edition, Addison-Wesley, 1997

Smith, Michael A., Object-Oriented Software in Ada 95, Thomson Computer Press, 1996

Sommerville, Ian, Software Engineering, Addison-Wesley, 1992 (an Ada friendly book on this topic)

Stroustrop, Bjarne, The C++ Programming Language, 3rd Edition, Addison-Wesley, 1997

Szyperski, Clemens,
 Component Software: Beyond Object-Oriented Programming, Addison-Wesley, 1998
 (Not an Ada book since it favors Java. But it is chock full of good ideas about components)

Taylor, David A, Object-Oriented Technology; A Manager's Guide, Addison-Wesley, 1992

Wheeler, David, A, Ada 95, The Lovelace Tutorial, Springer-Verlag, New York, 1997
[Other Books to be added]

Ada Distilled by Richard Riehle

 Page 113 of 117

Recommended Periodicals & Other Current Information

Most popular programming periodicals are staffed by editors who have little knowledge or interest in
software engineering. Those who do care about software engineering seem woefully ignorant about Ada.
Some of this ignorance reflects the general ignorance in the software community about Ada. Some of the
following sources are listed for their general interest rather than their attention to serious software issues.

Ada Letters, A Bimonthly Publication of SIGAda, the ACM Special Interest Group on Ada
 (ISSN 1094-3641)
 A good and reliable source of accurate information regarding Ada

JOOP, Journal of Object-Oriented Programming, SIGS Publications, (Now out of business)
 Publishes articles and columns with positive perspective on Ada

C++ Report, (especially the Column, Obfuscated C++), SIGS Publications
 If you want to be frightened about just how dangerous C++ really is, go to this source!

Embedded Systems Programming, Miller-Freeman Publications
 Good Ada articles from time to time. Other good articles of interest to Ada practitioners

Dr. Dobbs Journal, Miller-Freeman
 Generally misinformed about Ada. Editors, however, are open-minded about learning more accurate information

Internet Usenet Forum: comp.lang.ada

Internet Ada Advocacy ListServe: team-ada@acm.org

Internet AdaWorks Web Site: http://www.adaworks.com

Internet Ada Resources Association Web Site: http://www.adapower.com and http://www.adaic.org/

Microsoft Windows Programming in Ada.
 There are several good options. The easiest to learn is JEWL from
 John English. The FTP is: ftp://ftp.brighton.ac.uk/pub/je/jewl/.

 A commercial library, for serious Windows developers is CLAW from RR Software. This has
 a price tag but is worth every penny if you need industrial strength Ada Windows programs.
 http://www.rrsoftware.com

 The adapower.com site lists other options for those who want to program in Windows

Portable Windows and Graphics Programming

Check out the Gtk+ and OpenGL bindings available free on the Web. The GtkAda binding is a powerful
set of tools that allows you to build graphical user interfaces (GUI) and leverage the power of the portable
graphics development toolset, OpenGL. With these tools, you can build Ada applications that will be
second to none in usability, efficiency, and portability.

Caution: Do not depend on any information from
www.adahome.com. It is unreliable and out-of-date.

Ada Distilled for Ada 2005 by Richard Riehle

 Page 114 of 117

Index

A
abs · 7, 131, 132
abstract · 19, 78, 79, 87, 89, 131
access · 8, 10, 18, 19, 21, 23, 24, 25, 26, 30, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 61, 64, 65, 66, 75, 78,

79, 80, 84, 85, 86, 87, 88, 89, 91, 101, 102, 104, 107, 108, 111, 112, 114, 115, 116, 122, 128, 131, 137,
143, 148, 152, 154, 155, 156, 157, 158, 161, 164, 165

Ada Core Technologies · 2, 5, 113, 168
aliased · 48, 49, 50, 51, 131, 148, 160
all · 9, 10, 12, 13, 18, 19, 24, 25, 26, 30, 32, 33, 40, 42, 44, 47, 48, 49, 50, 51, 54, 55, 59, 62, 65, 69, 74,

76, 78, 80, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 94, 100, 101, 103, 104, 105, 108, 111, 112, 114, 115,
116, 117, 118, 122, 128, 129, 131, 139, 143, 146, 160, 161, 164

and · 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 46, 47, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 83, 84, 85, 87, 89, 90, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102,
103, 104, 105, 106, 107, 108, 109, 111, 113, 115, 117, 118, 119, 120, 122, 124, 125, 126, 127, 128, 129,
130, 131, 132, 135, 136, 137, 139, 143, 146, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 162,
164, 166, 167, 168

array · 18, 19, 22, 24, 30, 31, 32, 33, 37, 38, 52, 54, 63, 64, 72, 73, 79, 80, 81, 85, 86, 87, 88, 89, 90, 93,
101, 102, 104, 107, 108, 121, 131, 134, 143, 149, 151, 152, 153, 156, 162, 163

at · 2, 5, 13, 14, 15, 16, 17, 18, 26, 32, 34, 36, 40, 43, 44, 48, 49, 51, 54, 55, 59, 60, 62, 63, 70, 71, 72, 80,
81, 86, 90, 94, 95, 100, 105, 106, 107, 109, 118, 124, 126, 130, 131, 138, 146, 149, 151

B
begin · 5, 9, 10, 14, 15, 16, 18, 20, 28, 29, 31, 32, 33, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51,

52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 82, 83, 85, 86, 87, 88, 90,
91, 93, 94, 95, 96, 97, 98, 100, 101, 103, 105, 106, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118,
119, 120, 121, 125, 126, 127, 129, 130, 131

body · 8, 9, 10, 11, 12, 13, 14, 15, 19, 20, 26, 57, 67, 70, 71, 77, 78, 79, 81, 82, 83, 102, 105, 106, 109,
113, 119, 125, 126, 127, 129, 131, 148, 149, 156

C
C++ · 10, 22, 28, 29, 36, 66, 70, 93, 167, 168
case · 6, 18, 36, 39, 40, 42, 43, 44, 62, 63, 81, 89, 94, 95, 96, 101, 131, 148
Child Library Units · 11, 77, 79
COBOL · 93
code blocks · 15, 16, 43, 44, 45, 46, 59, 112, 159
Compilation Unit · 8, 9, 10, 11, 14, 35, 55, 56, 67, 69, 70, 71, 77, 80, 82, 83, 90, 95, 102, 110, 113, 125,

149, 160, 162
Compilation Units · 9, 10, 11, 14, 67, 69, 70, 83, 95, 149, 160, 162
Compiler Publishers · 5
constant · 9, 16, 21, 34, 36, 38, 44, 60, 64, 65, 66, 74, 94, 103, 104, 118, 131, 135, 136, 137, 146, 147, 150
D
declarations · 8, 9, 12, 14, 15, 16, 20, 24, 27, 29, 31, 44, 45, 51, 54, 57, 58, 64, 67, 69, 70, 73, 78, 105, 146
declare · 7, 13, 14, 15, 16, 24, 44, 45, 46, 49, 50, 51, 54, 66, 69, 70, 71, 72, 86, 93, 100, 109, 115, 118,

120, 121, 131
declare block · 14, 15, 16, 44, 45, 46, 49, 86, 121
delay · 18, 131
delta · 24, 71, 131, 134, 141, 148, 150

Ada Distilled by Richard Riehle

 Page 115 of 117

digits · 24, 27, 29, 53, 71, 75, 103, 131, 132, 135, 140, 141, 148, 150, 153, 154, 158
Dynamic Binding · 87, 89, 90, 113
E
elaboration · 14
else · 7, 15, 22, 40, 41, 42, 60, 62, 63, 64, 66, 82, 83, 93, 103, 105, 114, 125, 130, 131
elsif · 40, 41, 103, 131
end · 5, 7, 9, 10, 11, 12, 13, 15, 16, 18, 20, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,

43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 100, 101,
102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 123,
124, 125, 126, 127, 128, 129, 130, 131, 134, 135, 136, 138, 140, 141, 142, 144, 145, 147

entry · 5, 12, 14, 34, 40, 124, 125, 126, 127, 128, 129, 130, 131, 149, 150
exceptions · 8, 18, 22, 44, 80, 100, 101, 102, 103, 104, 134
exit · 39, 40, 45, 53, 56, 59, 60, 62, 89, 91, 95, 115, 125, 129, 130, 131
F
for · 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 89, 90, 91, 92, 93,
94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 118, 119, 120,
121, 122, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143,
144, 146, 147, 148, 149, 151, 153, 154, 155, 157, 158, 159, 160, 161, 164, 166, 167, 168

Fortran · 32
function · 8, 9, 11, 12, 14, 18, 19, 21, 22, 25, 27, 28, 29, 34, 41, 42, 43, 44, 45, 47, 50, 51, 52, 53, 54, 55,

56, 58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 75, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 88, 90,
93, 100, 101, 103, 104, 105, 106, 107, 108, 111, 112, 114, 115, 116, 118, 119, 122, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 143, 144, 145, 146, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
159, 160, 164, 165

G
generic · 15, 18, 28, 75, 77, 83, 93, 95, 96, 105, 106, 107, 108, 109, 110, 111, 131, 135, 139, 140, 141, 142
goto · 18, 131
GtkAda · 2, 5
I
Implementation · 8, 9, 10, 11, 14, 35, 55, 56, 67, 69, 70, 71, 77, 80, 82, 83, 90, 102, 110, 113, 125, 126,

127, 129, 130
J
Java · 5, 47, 99, 167
L
Libraries · 3, 5, 7, 15, 16, 17, 18, 22, 24, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 44, 45, 46,

47, 48, 49, 52, 53, 55, 57, 58, 59, 60, 62, 66, 67, 72, 73, 74, 75, 83, 85, 86, 88, 90, 91, 92, 93, 94, 95, 96,
97, 98, 99, 100, 101, 103, 104, 113, 117, 118, 120, 121, 122, 125, 126, 129, 131, 134, 135, 136, 137,
139, 142, 146, 147, 148, 149, 158, 166

Library Unit · 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 31, 34, 36, 37,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96,
98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
122, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 164, 165

Library Units · 2, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32,
34, 35, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 113, 117, 118, 119, 120, 122, 124, 125, 127,
129, 131, 134, 135, 136, 139, 140, 141, 142, 143, 144, 146, 148, 152, 156, 157, 160, 161, 162, 163, 164,
165, 168

Linux Programming · 3, 5, 113, 168

Ada Distilled by Richard Riehle

 Page 116 of 117

M
methods · 7, 8, 15, 19, 20, 35, 49, 51, 57, 67, 69, 70, 90, 102, 105, 107, 111, 146
mod · 7, 30, 96, 98, 131, 132, 140
N
null · 18, 20, 42, 48, 56, 62, 69, 72, 82, 90, 103, 110, 112, 113, 115, 116, 121, 127, 130, 131, 153, 160, 161
O
Object Modeling · 166, 167
Object-Oriented Programming · 24, 25, 34, 35, 78, 79, 80, 81, 84, 87, 89, 90, 91, 101, 102, 111, 122, 131,

149, 151, 159
OC Systems · 2, 5
P
package · 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 25, 26, 27, 28, 31, 32, 34, 35, 39, 44, 46,

47, 48, 49, 53, 54, 55, 56, 59, 62, 64, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
113, 117, 118, 119, 120, 122, 124, 125, 127, 129, 131, 134, 135, 136, 139, 140, 141, 142, 143, 144, 146,
160, 164, 165

Package Design · 7, 8, 9, 10, 11, 12, 13, 14, 19, 20, 22, 23, 26, 27, 29, 34, 54, 57, 64, 67, 69, 70, 71, 72,
73, 77, 78, 79, 80, 84, 89, 102, 105, 106, 108, 109, 113, 119, 120, 122, 123, 124, 125, 126, 127, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 165

Parameters · 9, 10, 21, 22, 25, 30, 33, 38, 39, 47, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 73, 76, 86, 89, 90, 92, 101, 105, 106, 107, 108, 109, 110, 117, 122, 127, 136, 137, 139, 158

pragma · 14, 15, 31, 34, 35, 131, 134, 135, 146, 162, 163
private · 8, 9, 10, 11, 12, 23, 24, 25, 26, 27, 41, 47, 69, 70, 77, 78, 79, 80, 81, 83, 84, 85, 87, 88, 89, 90,

101, 102, 103, 104, 106, 107, 108, 109, 111, 112, 115, 119, 122, 129, 131, 136, 142, 143, 144, 145, 146,
147, 149

procedure · 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 31, 36, 37, 38, 39, 40,
42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 66, 67, 69, 70, 71, 72, 73, 74, 75,
77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 94, 95, 96, 98, 100, 101, 102, 103, 104, 106, 107,
108, 109, 110, 111, 112, 113, 114, 115, 117, 118, 119, 122, 127, 129, 131, 136, 137, 138, 139, 140, 141,
142, 143, 144, 155, 156, 157, 161, 165

protected · 15, 23, 30, 70, 124, 128, 129, 130, 131, 150
R
raise · 18, 41, 61, 64, 82, 83, 100, 102, 103, 104, 131, 140
rem · 7, 131, 132
rename · 17, 117, 118, 120, 121, 122
requeue · 131
Reserved Words · 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,

28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129,
130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150,
151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168

return · 8, 9, 11, 12, 19, 21, 25, 27, 33, 38, 40, 41, 42, 43, 44, 45, 47, 50, 51, 52, 53, 54, 55, 56, 58, 61, 62,
63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 78, 79, 80, 81, 82, 83, 84, 86, 87, 88, 90, 93, 94, 100, 101, 103,
104, 105, 107, 108, 111, 112, 114, 115, 116, 117, 118, 119, 122, 125, 129, 131, 132, 133, 134, 135, 136,
137, 138, 139, 143, 144, 145, 146, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 164,
165

Reusable components · 15, 18, 28, 75, 77, 83, 93, 95, 96, 105, 106, 107, 108, 109, 110, 111, 131, 135, 139,
140, 141, 142

reverse · 37, 128, 131
S
Scope and Visibility · 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 24, 25, 27, 28, 34, 36, 38, 39, 40, 41,

44, 45, 46, 49, 50, 51, 52, 55, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 78, 79, 80, 89, 92,
94, 95, 96, 102, 113, 117, 118, 119, 123, 124, 125, 126, 135

Ada Distilled by Richard Riehle

 Page 117 of 117

select · 18, 126, 128, 131
separate · 11, 14, 61, 67, 80, 115, 131
Subprogram · 2, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 34,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94,
95, 96, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
118, 119, 122, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
146, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 164, 165

subprograms · 7, 17, 61, 80, 85, 90, 144
subtype · 27, 28, 29, 60, 75, 121, 131, 132, 136, 143, 144, 147, 148, 149, 150, 151, 152, 153, 154, 155,

156, 157, 158, 159, 160, 161, 162, 163, 164
Supported Operating Systems · 2, 3, 5, 164, 165, 168
T
tagged · 24, 25, 34, 35, 78, 79, 80, 81, 84, 87, 89, 90, 91, 101, 102, 111, 122, 131, 149, 151, 159
task · 14, 15, 23, 30, 57, 93, 124, 125, 126, 127, 128, 129, 130, 131, 149, 150, 152, 158, 159
Tasking · 5, 12, 14, 34, 40, 124, 125, 126, 127, 128, 129, 130, 131, 149, 150
terminate · 18, 66, 126, 128, 131
then · 7, 39, 40, 41, 42, 45, 58, 60, 61, 62, 63, 64, 66, 70, 82, 83, 93, 95, 98, 103, 105, 106, 114, 119, 125,

128, 131, 149, 152, 156, 157
type · 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,

37, 38, 41, 42, 47, 48, 49, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 73, 74,
75, 78, 79, 80, 81, 84, 85, 87, 88, 89, 90, 91, 92, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108, 109,
111, 112, 113, 115, 117, 118, 119, 120, 121, 122, 124, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136,
137, 139, 140, 141, 142, 143, 144, 146, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
161, 164

Type definitions · 9, 11, 12, 18, 19, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 37, 38, 41, 52, 54, 63, 64,
65, 69, 72, 73, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 93, 101, 102, 103, 104, 107, 108, 112, 121, 122,
123, 131, 134, 143, 148, 149, 151, 152, 153, 156, 158, 162, 163

type safety · 22
U
until · 10, 38, 39, 50, 85, 117, 124, 126, 127, 128, 131, 138, 149
use · 2, 6, 11, 12, 13, 15, 18, 19, 28, 29, 30, 31, 33, 35, 36, 37, 40, 43, 44, 46, 47, 48, 49, 52, 53, 54, 59, 61,

62, 66, 67, 69, 73, 74, 75, 80, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 111, 112, 117,
118, 119, 120, 125, 127, 128, 130, 131, 136, 143, 144, 164

V
Visibility Rules · 7, 9, 10, 12, 13, 17, 19, 20, 36, 45, 46, 51, 67, 69, 70, 71, 74, 80, 89, 96, 118
W
when · 2, 6, 15, 16, 22, 28, 29, 31, 37, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 54, 56, 59, 62, 64, 65,

77, 82, 89, 90, 91, 95, 100, 101, 103, 111, 115, 122, 124, 125, 126, 127, 128, 129, 130, 131, 149, 150,
152, 153, 157, 158, 159

while · 38, 39, 127, 131
WinTel Programming · 3, 5, 164, 168
with · 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39, 40, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
67, 69, 70, 72, 73, 74, 75, 76, 77, 78, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 119, 120, 122, 124, 125,
126, 127, 128, 129, 130, 131, 135, 136, 137, 138, 139, 143, 148, 149, 150, 151, 152, 153, 154, 155, 156,
157, 158, 159, 160, 161, 164, 166, 167, 168

X
xor · 7, 31, 131, 132

